光电情报网信息监测服务平台 Chinese Academy of Sciences | optic science and technology information network system

微信公众号

您当前的位置: 首页 > 资源详情

前沿 | 多材料体系三维集成光波导技术打造“双高”光波导器件

编译者:husisi发布时间:2024-9-2点击量:874 来源栏目:科技进展

随着高速光通信、智能光计算和灵敏光探测等领域的快速发展,光子集成系统正成为重要发展趋势,其对于单元器件性能、系统集成度和可拓展性提出了更高的要求。多材料体系三维集成技术突破了传统单一材料体系的器件性能限制、以及二维加工与集成技术的面积与集成度限制,有望实现高速率、高效率、高密度以及低功耗的新型光电集成系统。

华中科技大学王健教授和张宇教授所在的多维光子学实验室(MDPL)团队围绕三维堆叠技术和飞秒激光加工技术这两类主要的多材料体系三维集成光波导技术,详细介绍了十几年来多材料体系三维集成光波导的发展与应用,并展望了多材料体系三维集成光波导技术的未来趋势,该文被选为《光学学报》“信息光子器件与集成”专题(第44卷第15期)的亮点文章。

随着大数据和人工智能时代的到来,高速大容量光通信、高性能计算、高灵敏感知探测等技术飞速发展,作为重要支撑的光子集成系统在受到越来越多关注的同时,其对单元器件的性能以及系统的集成度和可拓展性等也提出了更高的要求。

光波导作为光子集成系统中光学连接的基本单元,相较于传统的电缆,具有更快的传输速率、更低的损耗以及更强的抗电磁干扰能力等显著优势。传统的光波导结构主要采用半导体二维加工方式制备,通常只能在同一平面内传播光并且受限于衍射极限,进而难以像微电子器件一样通过工艺制程的提升来实现器件尺寸的微缩,此时单一芯片上集成器件的数量会受到芯片本身面积的制约。

为了突破传统二维集成技术的限制,发展三维集成技术十分必要,其可以通过更充分地利用空间以实现更高的性能和集成度。以硅基光子平台和飞秒激光加工平台为代表的多材料体系三维集成光波导加工技术为这个问题提供了新的解决方案,多材料体系三维集成光波导器件如图1所示。

图1多材料体系三维集成光波导器件

三维堆叠技术

三维硅光子集成电路借助三维集成光波导实现更复杂的光路设计与更高的集成度,其将不同的二维波导通过多种方式三维集成在同一芯片上。利用三维堆叠技术制备的芯片的基础是二维波导,其材料与结构特性会对芯片性能产生影响,目前制备最为成熟、应用最为广泛的二维波导主要是硅基光波导。

层间耦合器

在三维集成光波导中,层间耦合器作为连接不同波导层的关键器件,对芯片性能有着显著的影响。光在一层波导中传输经过层间耦合器会耦合到另一层波导中,实现三维结构的光学传输路径切换。层间耦合器按照应用于不同材料场景可分为硅/氮化硅层间耦合器和硅基异质集成层间耦合器,按照耦合方式可分为倏逝波耦合器、光栅耦合器和直接3D波导耦合,如图2所示。

图2 三维层间耦合器。(a)倏逝波耦合器;(b)光栅耦合器;(c)3D波导耦合器

光电融合集成器件

随着数据中心互连带宽需求的不断增长,传统电互连在满足数据中心带宽和能耗要求方面逐渐面临瓶颈问题,而光学信号具有衰减小、能耗低和带宽大等特点,并且硅基集成光子器件能够使用成熟的CMOS加工工艺,因此将光子芯片集成进数据中心能更好满足增长需求。为了提高光互连性能,除了发展无源光波导器件的三维集成技术,有源光芯片中器件和对应电控制模块之间的异构集成方案也受到了广泛关注,主要可以分为单片集成、2D集成、2.5D集成和3D集成四类。目前,2.5D和3D集成技术已经被应用于高性能光发射机、接收机、波分复用收发器和光互连模块等,如图3所示。

图3 三维集成光发射机/接收机。(a)基于硅中介层和低温共烧陶瓷的2.5D集成四通道硅光发射机;(b)基于16 nm CMOS 鳍式场效应晶体管的2.5D集成接收机;(c)基于铜柱的3D集成CMOS/硅光接收器;(d)高灵敏度25 Gbit/s的3D集成硅光接收器

飞秒激光加工技术

飞秒激光直写技术在光子集成器件的制造中也发挥着重要的作用,其利用飞秒激光脉冲的超短持续时间和高峰值功率来实现对透明介质材料的精细修改。与传统的光波导制造方法相比,飞秒激光直写技术提供了一种更为灵活和可控的三维加工手段,在多种材料平台(如玻璃、晶体和聚合物等)上都能够实现复杂光子结构的直接写入,从而在光通信和光信号处理等领域中具有广泛的应用前景。

飞秒激光加工技术常用于无源器件的加工,包括偏振复用器件、模式复用器件、扇入扇出器件和拓扑结构器件等:偏振复用器件利用波导的双折射效应实现不同偏振态光信号的复用和解复用,从而增加系统的传输容量;模式复用器件通过在多模光纤中复用不同空间模式的信号,进一步有效提高通信容量,如图4所示;多芯光纤扇入扇出器件解决了多芯光纤与单模光纤或光子集成电路间的高效耦合问题,为构建高密度集成光电子系统提供了解决方案;近年来拓扑光子学因其能够利用光波物理维度来探索复杂的体和边缘拓扑状态而备受关注,而波导光子晶格可广泛用于构建光子拓扑结构,为深入探究拓扑效应与粒子相互作用之间的交互作用提供了新的途径。

图4 基于定向耦合器的模式复用器。(a) 均匀波导定向耦合器;(b) 锥形波导定向耦合器;(c) 片上轨道角动量(OAM)模式复用解复用器

多材料体系三维集成光波导器件未来正朝着多样化、集成化、规模化、功能化的方向发展。在材料体系方面,一些新兴材料与现有集成器件的结合值得期待;在集成方式方面,更多的异质异构三维集成和先进封装技术及其有机结合值得研究;在调控维度方面,多场多物理维度融合、多种功能融合、光电子与微电子深度融合等光电融合三维集成具有重要意义;在集成规模方面,大规模、可扩展、低成本的三维集成芯片是重要的发展方向;在功能性方面,未来更多样的芯片、器件、模块、系统和更广阔的应用值得期待,三维集成光波导技术和器件将对此进行赋能。

总体来说,相比于现有的光电集成器件,多材料体系三维集成光波导器件的集成度显著提升,随着设计优化到工艺制备再到测试应用流程的不断完善,其在高速大容量光通信、数据中心光互连、高性能光计算、量子信息处理与智能微系统等众多领域中具有重要的应用前景。

原文题目

前沿 | 多材料体系三维集成光波导技术打造“双高”光波导器件

提供服务:导出本资源

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190