光电情报网信息监测服务平台 Chinese Academy of Sciences | optic science and technology information network system

微信公众号

您当前的位置: 首页 > 科技进展

科技进展共计 1,364 条信息

      全选  导出

1 上海微系统所等开发出可批量制造的新型光学“硅”与芯片技术 2024-05-11

5月8日,中国科学院上海微系统与信息技术研究所研究员欧欣团队在钽酸锂异质集成晶圆及高性能光子芯片制备领域取得突破性进展。相关研究成果以《可批量制造的钽酸锂集成光子芯片》(Lithium tantalate photonic integrated circuits for volume manufacturing)为题,发表在《自然》(Nature)上。 随着全球集成电路产业发展进入“后摩尔时代”,集成电路芯片性能提升的难度和成本越来越高,人们迫切寻找新的技术方案。以硅光技术和薄膜铌酸锂光子技术为代表的集成光电技术可以应对这一问题。其中,铌酸锂有“光学硅”之称,近年来备受关注。 与铌酸锂类似,欧欣团队与合作者证明单晶钽酸锂薄膜同样具有优异的电光转换特性,在双折射、透明窗口范围、抗光折变、频率梳产生等方面比铌酸锂更具优势。此外,硅基钽酸锂异质晶圆的制备工艺与绝缘体上的硅更接近,因此钽酸锂薄膜可实现低成本和规模化制造,具有应用价值。 欧欣团队采用基于“万能离子刀”的异质集成技术,通过氢离子注入结合晶圆键合的方法,制备了高质量硅基钽酸锂单晶薄膜异质晶圆。进一步,合作团队开发了超低损耗钽酸锂光子器件微纳加工方法,使对应器件的光学损耗降低至5.6 dB m-1,这低于其他团队报道的晶圆级铌酸锂波导的最低损耗值。该研究结合晶圆级流片工艺,探讨了钽酸锂材料内低双折射对于模式交叉的有效抑制,并验证了可以应用于整个通信波段的钽酸锂光子微腔谐振器。钽酸锂光子芯片展现出与铌酸锂薄膜相当的电光调制效率;同时,基于钽酸锂光子芯片,该研究首次在X切型电光平台中产生了孤子光学频率梳,结合电光可调谐性质,有望在激光雷达和精密测量等方面实现应用。当前,该研究已攻关8英寸晶圆制备技术,为更大规模的国产光电集成芯片和移动终端射频滤波器芯片的发展奠定了材料基础。 欧欣介绍:“相较于薄膜铌酸锂,薄膜钽酸锂更易制备,且制备效率更高。同时,钽酸锂薄膜具有更宽的透明窗口、强电光调制、弱双折射、更强的抗光折变特性,这种先天的材料优势扩展了钽酸锂平台的光学设计自由度。” 上述成果的第一完成单位为上海微系统所。该工作由上海微系统所和瑞士洛桑联邦理工学院合作完成。 钽酸锂异质集成晶圆制备及高性能光子芯片示意图 (a)硅基钽酸锂异质晶圆(b)薄膜钽酸锂光学波导制备工艺及波导的扫描透镜显微镜 (a)钽酸锂弯曲波导、(b)铌酸锂弯曲波导的色散曲线设计(实线)与实际色散曲线(散点),可观察到铌酸锂波导色散曲线中明显的模式交叉效应 (a)薄膜钽酸锂电光调制器;(b)首次实现X切型钽酸锂上的克尔孤子光频梳 8英寸硅基薄膜钽酸锂晶圆制备 查看详细>>

来源: 点击量:3

2 位相调控光电耦合奇异点增强的磁子频率梳研究获进展 2024-05-11

近日,中国科学院上海技术物理研究所红外科学与技术重点实验室姚碧霂、陆卫团队与山东大学物理学院饶金威团队合作,并联合上海科技大学、华中科技大学和浙江大学等,在光诱导电子自旋强耦合态中构建奇异点,通过光电耦合位相调控以提升基于磁子(电子自旋集体激发)的频率梳的产生效率,创造了迄今为止磁子体系中频率梳齿数的最高纪录。相关研究成果以Enhancement of magnonic frequency combs by exceptional points为题,发表在《自然-物理》(Nature Physics)上。 光学频率梳由离散光谱线构成,展现出等间距以及梳状的信号分布。光学频率梳提高了频率测量的精度,在卫星导航、精密距离测量、原子钟和分子识别等领域具有重要作用。光学频率梳的应用推进了其他物态频率梳的研究。电子自旋集体激发形成的磁子具有免疫焦耳热的优势,其灵活的自旋动力学调控特性是融合多种物态优势的优异载体。然而,常规的磁子频率梳因依赖材料的非线性效应,需要较高功率密度才能够产生有限的梳齿,这限制了其向高效、片上集成、可调节的磁子功能器件转化的进程。 此前,该团队发现光诱导磁子态的优势。该态与常规磁子模式不同,其有效磁矩受光诱导泵浦的相干控制且磁矩更低、阻尼更小,在驱动功率较低时能够引发较大进动偏角,形成非线性效应,促成磁子频率梳形成。该团队通过位相调控实现了对光诱导磁子耦合过程及其非线性响应的操控,增强了非线性耦合效应,达成了磁子频率梳的增长。这一增强效应不依赖于驱动功率的提高,而是通过优化非线性耦合过程实现的。此外,光诱导磁子的高度可调特性使得科研人员能够通过简单操控泵浦功率、频率和极化以控制磁子频率梳。 该研究融合了磁子频率梳与非厄米奇异点两个关键概念,展示了通过耗散来操控非线性磁子模式的能力,这对非厄米物理和磁子电子学具有重要意义。研究开发的高效磁子频率梳生成方法,推动了磁子电子学中宽频带、离散且相干自旋波源的研究,并有望在灵敏的光电检测应用中发挥建设性作用。 a、磁子模式(示意图中类比为陀螺)间的特殊耦合状态,能够提高磁子频率梳(示意图中表示为光带)的产生效率;b、利用奇异点增强磁子频率梳原理图;c、位相调控下磁子频率梳的增强 查看详细>>

来源: 点击量:3

3 中国科大首次实现光子的分数量子反常霍尔态 2024-05-08

中国科学技术大学潘建伟、陆朝阳、陈明城教授等利用基于自主研发的Plasmonium(等离子体跃迁型)超导高非简谐性光学谐振器阵列,实现了光子间的非线性相互作用,并进一步在此系统中构建出作用于光子的等效磁场以构造人工规范场,在国际上首次实现了光子的分数量子反常霍尔态。这是利用“自底而上”的量子模拟方法进行量子物态和量子计算研究的重要进展。相关成果以长文的形式于北京时间5月3日发表在国际学术期刊《科学》(Science)上。 霍尔效应是指当电流通过置于磁场中的材料时,电子受到洛伦兹力的作用,在材料内部产生垂直于电流和磁场方向的电压。这个效应由美国科学家霍尔在1879年发现,并被广泛应用于电磁感测领域。1980年,德国科学家冯·克利钦发现在极低温和强磁场条件下,霍尔效应出现整数量子化的电导率平台。这一新现象超出了经典物理学的描述,被称为整数量子霍尔效应,它为精确测量电阻提供了标准。1981年,美籍华裔科学家崔琦和德国科学家施特默发现了分数量子霍尔效应。整数和分数量子霍尔效应的发现分别获得1985年和1998年诺贝尔物理学奖。 此后四十余年间,分数量子霍尔效应尤其受到了广泛的关注。由于最低朗道能级简并电子的相互作用,分数量子霍尔态展现出非平庸的多体纠缠,对其研究所衍生出的拓扑序、复合费米子等理论成果逐渐成为多体物理学的基本模型。与此同时,分数量子霍尔态可激发出局域的准粒子,这种准粒子具有奇异的分数统计和拓扑保护性质,有望成为拓扑量子计算的载体。 反常霍尔效应是指无需外部磁场的情况下观测到相关效应。2013年,中国研究团队观测到整数量子反常霍尔效应。2023年,美国和中国的研究团队分别独立在双层转角碲化钼中观测到分数量子反常霍尔效应。 传统的量子霍尔效应实验研究采用“自顶而下”的方式,即在特定材料的基础上,利用该材料已有的结构和性质实现制备量子霍尔态。通常情况下,需要极低温环境、极高的二维材料纯净度和极强的磁场,对实验要求较为苛刻。此外,传统“自顶而下”的方法难以对系统微观量子态进行单点位独立地操控和测量,一定程度上限制了其在量子信息科学中的应用。 与之相对地,人工搭建的量子系统结构清晰,灵活可控,是一种“自底而上”研究复杂量子物态的新范式。其优势包括:无需外磁场,通过变换耦合形式即可构造出等效人工规范场;通过对系统进行高精度可寻址的操控,可实现对高集成度量子系统微观性质的全面测量,并加以进一步可控的利用。这类技术被称为量子模拟,是“第二次量子革命”的重要内容,有望在近期应用于模拟经典计算困难的量子系统并达到“量子计算优越性”。 此前,国际上已经基于其开展了一些合成拓扑物态、研究拓扑性质的量子模拟工作。然而,由于以往系统中耦合形式和非线性强度的限制,人们一直未能在二维晶格中为光子构建人工规范场。 为解决这一重大挑战,团队在国际上自主研发并命名了一种新型超导量子比特Plasmonium,打破了目前主流的Transmon(传输子型)量子比特相干性与非简谐性之间的制约,用更高的非简谐性提供了光子间更强的排斥作用。进一步,团队通过交流耦合的方式构造出作用于光子的等效磁场,使光子绕晶格的流动可积累Berry(贝里)相位,解决了实现光子分数量子反常霍尔效应的两个关键难题。同时,这样的人造系统具有可寻址、单点位独立控制和读取,以及可编程性强的优势,为实验观测和操纵提供了新的手段。 在该项工作中,研究人员观测到了分数量子霍尔态独有的拓扑关联性质,验证了该系统的分数霍尔电导。同时,他们通过引入局域势场的方法,跟踪了准粒子的产生过程,证实了准粒子的不可压缩性质。 《科学》杂志审稿人高度评价这一工作,认为这一工作“是利用相互作用光子进行量子模拟的重大进展”(a significant advance in quantum simulation with interacting photons),“一种新颖的局域单点控制和自底而上的途径”(a novel form of local control and bottom-up approach),“有潜力为实现非阿贝尔拓扑态开辟一条新的途径,这是利用二维电子气材料的传统方法很难探测的”(potentially open new pathways for realizing non-Abelian topological states, which have been extremely challenging to probe in two-dimensional electron gases)。 诺贝尔物理学奖得主Frank Wilczek评价,这种“自底而上”、用人造原子构建哈密顿量的途径是一个“非常有前途的想法”(a very promising idea),这是一个令人印象深刻的实验(a very impressive experiment),为基于任意子的量子信息处理迈出了重要一步(a remarkable step)。沃尔夫奖获得者Peter Zoller评价,“这在科学和技术上都是一项杰出的成就”(a remarkable achievement, both scientifically and technically),“实现这样的目标是多年来全球顶级实验室竞争的量子模拟的圣杯之一”(one of the holy grails of quantum simulation)。 成果示意图。16个非线性“光子盒”阵列囚禁的微波光子强相互作用形成分数量子反常霍尔态(注:“光子盒”的名字最早来自1930年爱因斯坦和波尔争论提出的思想实验) 在非线性光子系统中构建人工规范场,实现光子的分数量子霍尔态 观察到分数量子霍尔态的拓扑关联和拓扑光子流 观察到准粒子的不可压缩和分数霍尔电导 查看详细>>

来源: 点击量:13

4 基于相变的可重构微纳光学器件 2024-05-08

微纳光学器件具有在亚波长尺度范围内发射、引导、调制、局域、吸收和探测光的能力。与传统的光学器件相比,微纳光学器件具有更小的体积、更高的集成度以及更加丰富的光学功能,展现出更广阔的应用前景和更高的技术价值,现已成为现代集成光学系统中不可或缺的组成部分。在性能方面,微纳光学器件展示出高分辨率、高传输效率和高开关比等优异的光学性能;在制作工艺上,微纳光学器件采用与半导体工艺兼容的先进加工技术,不仅保证了高生产效率和精确度,还降低了生产成本。微纳光学器件的发展极大的推动了集成光学技术的进步,使得许多新奇的光学现象和技术成为可能,并因此带来了光学神经网络、光子集成电路、光量子技术、光通信、生物传感和光学成像等领域的技术革新。 静态微纳光学器件的光学特性在其制备完成后随之固定,在一定程度上限制了器件功能性的拓展,通过引入功能材料(如液晶、半导体材料、二维材料、柔性材料、相变材料等)或功能器件(如异质结、微机电系统等),能够实现微纳光学器件光学响应的可逆动态调控,从而形成了可重构微纳光学器件。其中,相变材料因相变过程中伴随的材料光学性质或形状变化而实现相应器件的可重构光学调制,具有相变响应速度快、可循环次数多、相变引起的光学对比度高以及相变激励方式多元化等优点,为实现可重构微纳光学器件提供了极具竞争力的解决方案。 中国科学院物理研究所/北京凝聚态物理国家研究中心微加工实验室的李俊杰课题组近年来聚焦于微纳光子学器件设计、加工及功能集成方面的研究,并在基于相变材料光学超表面的动态光场调控方面取得了一系列重要进展(Advanced Functional Materials 2024,34,2310626;Laser&Photonics Reviews 2023,17,2200364;Nanoscale 2020,12,8758;Applied Physics Letters 2018,113,231103)。在此基础上,该课题组参考了大量文献资料和最新研究报道,撰写了基于相变材料的可重构微纳光学器件的综述文章,从相变材料的性质和相变机制的角度出发,对其在可重构微纳光学器件方面的应用做出了详细介绍和评述(见图1)。文中介绍的用于实现可重构微纳光学器件的相变材料主要包括三种,分别是硫系相变材料(Chalcogenides)、过渡金属氧化物(Transition metal oxides)以及形状记忆合金(Shape memory alloys)。如图2所示,材料的相变激励方式包括热调控、光调控、电调控、机械调控、磁场调控和电化学调控。其中,电调控与光调控在调控的便利性与可集成性方面优于其它的相变调控方式,是两种最具应用价值的相变调控手段(见图3)。相变前后,硫系相变材料与过渡金属氧化物的介电性质发生了明显的变化,这分别源于电子离域程度以及能带结构的改变,而形状记忆合金则表现出基于马氏体相变的可重构形状变化(见图4)。表1汇总了目前报道的基于相变材料的可重构微纳光学器件,主要包括:可重构超表面、可重构片上光学器件、可调光学薄膜器件、光电探测器、全光开关、可调超表面吸收器、可调太赫兹等离激元器件以及可重构双稳态光学器件等,这些器件的工作波段涵盖紫外、可见、红外以及太赫兹波段,所包含的相变材料形式多样,既有薄膜形式,也包括图案化结构,而实现相变调控的手段主要集中在电调控和光调控技术上。这些器件以按需或自适应的调控方式与入射光相互作用,从而实现特定的光学调制功能,在新一代微纳光学器件及集成光学系统的发展中发挥了不可替代的作用。最后,该综述对基于相变机制的可重构微纳光学器件的现有挑战及未来发展方向进行了总结和展望。在推动可重构微纳光学器件的实用化进程中,应充分考虑相变功耗、调控便利性、相变均匀性、光信号调制幅度与传输效率等问题,未来,基于相变机制的可重构微纳光学器件将进一步向着高度集成化、高效调制、快速响应、低功耗和耐用性出色的方向发展。 图1三类相变材料及其在可重构微纳光学器件中的应用 图2三类相变材料的元素组成及相变激励手段 图3电调控与光调控示意图 图4相变的物理机制及相变引起材料性质的变化 表1基于相变材料的可重构微纳光学器件汇总 查看详细>>

来源: 点击量:11

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190