光电情报网信息监测服务平台 Chinese Academy of Sciences | optic science and technology information network system

微信公众号

您当前的位置: 首页 > 综合资讯

综合资讯共计 6,290 条信息

      全选  导出

1 长光杂散辐射分析软件V1.0正式版正式发布 2024-06-21

6月18日,2024长春国际光电博览会(以下简称光博会)以“光电引领共创未来”为主题在长春东北亚国际博览中心隆重开幕,中国科学院长春光机所在A1-H01展位亮相。上午11点18分,由长春光机所自主研发的通用光学设计分析系列软件——长光杂散辐射分析软件V1.0正式版举行了发布仪式。 中国工程院院士、长春光机所所长张学军亲自讲解了这款光学软件的核心功能和用途,多名领导和院士莅临展位指导交流。 长光杂散辐射分析软件是一款利用光线追迹方法来模拟光学系统杂散辐射的大型光学工程软件,具备三维实体光机建模、光源建模、表面属性建模、光线追迹、杂散辐射分析等核心功能,可用于航天、航空、安防、医疗、电子等领域高端光学系统的仿真分析。 该光学软件的研发团队由光学系统先进制造重点实验室(中国科学院)和长春光机所先进计算与数字工程研究中心两个部门的相关人员组成,团队规模40人左右,这是一支平均年龄仅有33岁的研究队伍。在研制过程中,团队克服重重困难,突破了光源发光属性、光学与机械元件散射属性的测量与表征技术、基于蒙特卡洛方法的光线追迹与分裂技术、杂光数据记录方案和路径分类方法等核心关键技术,完全掌握底层核心算法、拥有自主知识产权、核心技术指标优异,为实现我国光学软件自主化、为工业软件国产化贡献了一份力量。   查看详细>>

来源: 点击量:0

2 洛桑联邦理工学院开发首个芯片级铒激光器 2024-06-21

光纤激光器使用掺有稀土元素(铒、镱、钕等)的光纤作为其光学增益材料,在泵浦源的激励下发出高质量的光束,效率高且耐用,通常比其他类型激光器体积更小。尽管如此,对将光纤激光器微型化至芯片级别的需求日益增长。基于铒掺杂的光纤激光器片上微型化受到广泛关注,然而,窄线宽铒掺杂波导激光器面临的主要挑战是集成具有低背景噪声和长度足够长的有源波导,其长度范围通常从几十厘米到米级,以确保单频操作和提供足够的往返增益。 来自瑞士洛桑联邦理工学院的研究人员开发了首个芯片集成的掺铒波导激光器,采用米级长的铒掺杂氮化硅波导,可以提供超过30 dB的净增益和超过100 mW的输出功率,其性能接近光纤激光器和最先进的半导体扩展腔激光器。相关研究成果发表于Nature Photonics上。 芯片级激光器 研究人员使用最先进的制造工艺开发了芯片级掺铒激光器,其结构包含一个掺铒光子集成电路和一个边缘耦合的III-V族半导体泵浦激光二极管。首先,他们基于超低损耗的氮化硅光子集成电路构建了米级长的芯片光学腔,其腔内基于微环的Vernier滤波器能够在掺铒增益带宽内实现单模激光。“由于集成了微环谐振器,即使在紧凑的芯片尺寸下,我们也能够将激光腔设计为米级长度”研究人员说道。 图1混合集成Vernier激光器的示意图 然后,研究人员在芯片中掺入了高浓度的铒离子,创建了激光所需的有源增益介质。最后,他们将光路与III-V族半导体泵浦激光器集成,以激发铒离子产生激光束。为了优化性能并实现精确的波长控制,研究人员设计了一种创新的腔内设计,采用基于微环的Vernier滤波器——一种可以选择特定光频率的光学滤波器。 功率、精度、稳定性和低噪声 为了表征铒掺杂波导激光器的性能,研究人员对激光器进行了光子封装,如图2所示。该激光器显示出超过70 dB的边模抑制比,超过了以往集成掺铒激光器和光纤激光器的表现。同时,这些滤波器允许激光器在宽波长范围内动态调谐,使其在各种应用中具有多功能性和可用性。该设计支持输出稳定的单模激光,具有50 GHz的极窄本征线宽。同时,确保了在光谱范围内的单频稳定输出,适用于高精度测量应用。 图2基于氮化硅光子集成电路的全封装的混合集成掺铒激光器 新激光器的输出功率已经超过10 mW,边模抑制比大于70 dB,性能优于许多传统系统。它还具有窄线宽,这意味着其发出的光“非常纯净和稳定”,研究人员表示,这对于传感、陀螺仪、激光雷达和光频率计量等相干应用至关重要。 基于微环的Vernier滤波器使激光器在C波段和L波段内实现40 nm的宽波长可调性,在调谐和低光谱伪影指标上均超越了传统光纤激光器。同时,该铒掺杂波导激光器兼容当前的半导体制造工艺,具有结合光纤激光器相干性和集成光子学低尺寸、功耗和成本的潜力。这类激光器可应用在如相干传感的现有技术上,同时也为需要高产量的新兴应用提供了潜在性解决方案,例如相干激光雷达、光子雷达和相干光通信。 查看详细>>

来源: 点击量:1

3 探索 | 通过矢量光束分选为光学技术树立新标准 2024-06-13

高效管理和利用VSB历来是一项挑战。它们的复杂性需要精确的分类和识别方法才能用于实际应用。因此,提高光通信的效率、带宽和安全性,并促进量子计算的创新,取决于我们有效处理这些复杂波束的能力。 这项研究的核心是一种基于自旋多路复用衍射超表面的紧凑、高效的工具。这种精密设计的表面在微观尺度上工作,以非凡的精度操纵光束。 该设备引导光线穿过一系列精确校准的超表面层。每一层都与光相互作用,逐渐将其塑造成预定的配置。 当光线离开设备时,每种类型的VSB都会被分类,并可以通过其独特的特征进行识别。这种同时对光束进行分选的能力为高维通信和量子信息处理的进步铺平了道路。 技术影响包括: 光通信:在保持安全的同时提高数据传输速率仍是重中之重。超表面处理复杂光束的能力提高了数据传输范式变化的可能性,从而提高了现有物理基础设施的效率。 量子计算:经典计算和量子信息处理本质上是不同的。对光束的精确操纵为量子计算系统加速开辟了新的可能性。 挑战与展望 尽管这项研究是向前迈出的重要一步,但在优化设备以适应实际使用并将其集成到当前技术框架中仍然存在问题。研究人员仍然对这项技术的潜力充满希望,并正在努力改进它。 从实验室创新到广泛的实际应用的道路是复杂的,但随着这些激动人心的发现,通往日常整合的道路变得越来越清晰。 查看详细>>

来源: 点击量:484

4 前沿 | 1,033 GHz超高增益带宽积雪崩光电探测器 2024-06-13

华中科技大学武汉光电国家研究中心的张新亮教授、余宇教授团队在光电探测器研究领域取得重要突破。研究团队基于硅锗材料构建L型SACM结构并协同谐振效应,克服传统材料和工艺限制,为探测器的增益与带宽性能带来颠覆性提升。该工作将雪崩光电探测器APD的增益带宽积提升至THz量级,为下一代高速光互连及人工智能等新兴领域提供了新的技术路径和解决方案。 雪崩光电探测器(APD)是一种特殊的具有增益的光电探测器,在实现光电物理转换的同时,通过材料内部的载流子倍增机制对光电流进行有效放大,被广泛地应用于对弱光检测场合。此外,随着全球数据量的海量激增与摩尔定律逼近极限,信息时代正遭遇容量危机,要求探测器兼具大带宽的工作特性,以支撑当今数据中心的高速率通信。因此,增益带宽积(GBP)作为衡量APD性能的核心指标,它反映着APD在实现光电转换的过程中所兼顾增益和带宽的能力,GBP对于光通信系统的灵敏度与通信速率起到决定性影响。 然而上世纪六十年代,美国物理学家Emmons便从理论上揭示了APD的增益和带宽之间存在固有矛盾。历经半个世纪的发展,传统的商用APD采用磷化铟(InP)或者铟铝砷(InAlAs)作为载流子的倍增材料,器件带宽超过35 GHz,但受限于材料的低增益与高噪声的内禀属性,其增益带宽积至今无法突破300 GHz瓶颈,在光模块产业从单波100 Gb/s向着单波200 Gb/s技术更迭的浪潮中难以立足。 伴随着近三十年硅光技术的蓬勃发展,以硅(Si)作为倍增材料,外延生长锗(Ge)实现1310/1550 nm通信波段光吸收的硅锗APD,逐步迈向光通信领域的中心。虽然,Si材料相较于InP/InAlAs具有更优的倍增特性,理论上支持更高的增益。但是,硅锗APD的带宽特性受到Ge材料较低载流子迁移率的制约,加之局限的优化技术与工艺手段,其增益带宽积数十年来始终徘徊于百GHz量级。 图1本工作与其他APD性能指标对比:速率、带宽和增益带宽积 近日,张新亮、余宇教授团队研制出世界首个增益带宽积突破1THz的高性能锗硅APD。研究团队利用“L型”吸收-电荷-倍增分离的结构(SACM),并且协同调控其中电场分布和谐振效应,器件在增益高达19.5的状态下仍能得到53GHz的大带宽,即1033 GHz增益带宽积。其中,通过对P型电荷层宽度进行恰当拉宽,有效地防止电荷层向倍增区扩散的同时,还对内部电场强度进行精密调控,隔离了不利于增益的锗倍增过程。然后,在Ge和Si之间引入间隙用于抑制Ge表面的电场,从而降低APD的有效电离系数而提高增益。最后,利用电极上的螺旋设计引入等效电感,优化倍增区域的动态谐振进而抬升器件带宽,促使GBP进一步提升。此外,条形硅波导采用锥型耦合结构用于解耦光吸收长度和载流子传输路径,保证了效率和速率的双重提高。 研究团队还基于硅锗APD进一步开展了高速信号的眼图与信噪比测试(图3),以验证器件的高速接收特性。实验表明,探测器对于112 Gb/s OOK和200 Gb/s PAM4的超高速率弱光信号,均能实现高灵敏度接收。此外,利用四通道APD阵列结合波分复用技术,成功演示了满足800 Gb/s业界前沿标准的高速率光信号接收。 图2所述硅锗APD结构(a),器件带宽(b)、增益与增益带宽积测试结果(c) 图3 APD高速信号传输测试 该研究针对硅锗材料内蕴的物理机制以及工艺结构提出行之有效的优化策略,解决了APD的增益与带宽难以协同提升的难题,创造了THz量级增益带宽积纪录,有望推动高速硅光方案进一步跨越式发展。同时,硅锗APD的制备与成熟的互补金属氧化物半导体(CMOS)工艺完全兼容,易于实现低成本、大规模量产。伴随着该技术的深入优化与应用,能够加速800G甚至1.6T光模块的全球化产业布局,并在下一代光通信系统中实现更快的数据传输速度和更高的通信质量,为大数据、云计算和人工智能等新兴科技发展提供强有力的支持。 查看详细>>

来源: 点击量:510

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190