光电情报网信息监测服务平台 Chinese Academy of Sciences | optic science and technology information network system

微信公众号

您当前的位置: 首页 > 综合资讯

综合资讯共计 6,311 条信息

      全选  导出

1 探索 | 苏州纳米所在环形腔被动锁模激光器理论研究中取得新进展 2024-07-24

随着5G通信、万物互联、AR技术等新型通讯方式的兴起,全球对数据流量的需求飞速暴涨,实现高速率、大容量的数据传输已迫在眉睫。半导体被动锁模激光器在频域可产生毫瓦级、百GHz重频的相干光梳,在时域可输出亚皮秒级光脉冲,已成为实现波分复用、时分复用等大容量通信技术的最佳选择。其中,环形腔半导体被动锁模激光器(PML-SRLs)因其重频率精确控制、易于单片集成而备受关注,但是目前尚缺乏系统的理论研究,导致PML-SRLs进展缓慢,严重制约其发展和应用。 基于此,中国科学院苏州纳米技术与纳米仿生研究所半导体显示材料与芯片重点实验室的III-V信息光电子器件研究团队首次基于时域行波方程、载流子密度偏微分方程建立了PML-SRLs的理论模型,系统研究了该类器件的调控规律与设计优化准则。研究揭示出:PML-SRLs的工作状态取决于激光器中的增益-损耗的时域平衡,该平衡由PML-SRLs中的半导体光放大器(SOA)的载流子积累速率、可饱和吸收体(SA)的载流子寿命、环形谐振腔的往返时间三者之间的瞬态关系决定。此外,该工作首次发现使用具有窄增益谱的SOA与短谐振腔长的锁模激光器可导致输出脉冲合并,获得高能量光脉冲。该项工作解决了PML-SRLs系统理论缺乏问题,所揭示的物理机制与优化准则适用于所有类型的PML-SRLs器件,为其进一步发展和应用奠定了基础。 图1.(a)仿真PML-SRLs器件示意图;(b)稳定锁模状态下,SOA中剩余载流子密度、SA中光生载流子密度、SOA中产生光脉冲随时间变化关系;(c)窄增益谱的半导体光放大器与短谐振腔长配置导致输出脉冲合并的演化图 查看详细>>

来源: 点击量:6

2 突破 | 半导体所在氮化物位错演化机制及光电神经网络器件研究领域取得新进展 2024-07-24

III-族氮化物多采用蓝宝石衬底异质外延生长,由于大的晶格失配和热失配,导致高密度穿透位错(108-1010),极大地影响氮化物发光器件、电子电力器件性能。中国科学院半导体研究所刘志强研究员团队长期聚焦氮化物生长界面研究并形成系列研究成果,明确了原子尺度氮化物/蓝宝石生长界面构型,阐明了原子尺度界面应力释放机制。近期,半导体所刘志强研究员团队与北京大学高鹏教授,福州大学吴朝兴教授、郭太良教授,韩国汉阳大学Tae Whan Kim教授团队合作,在氮化物位错演化机制及光电神经网络器件研究领域取得新进展。 当前对于穿透位错的有效抑制手段有限且低效。为了进一步揭示氮化物生长界面的原子尺度位错演化过程,有效降低穿透性刃位错密度,半导体所刘志强研究员团队与北京大学高鹏教授团队开展合作,对GaN/Al2O3界面进行了平面高分辨透射电子显微镜(HRTEM)分析,同时观察到了摩尔图案(Moirépatterns)变形和失配位错的终止;并对摩尔图案变形区域进行原子级表征,基于原子结构以及伯格斯矢量分析,确定导致摩尔图案变形的缺陷类型为穿透刃位错,从而证明外延层中的穿透刃位错起源于界面处失配位错的融合反应(图1-2)。基于此氮化物穿透位错演化机制的新理解,研究人员构建了滑移界面,降低了滑移势垒,引入了新的应力释放途径,从而揭示了氮化物生长界面位错原子级演化过程,提出了从源头上抑制位错生成的外延新思路,最终实现GaN外延层穿透刃位错密度降低近一个数量级。 基于高质量外延材料的氮化物光电器件是实现类脑神经网络的技术路线之一。半导体所刘志强研究员团队与福州大学吴朝兴教授,郭太良教授、韩国汉阳大学Tae Whan Kim教授团队合作,构建了基于高质量nano-LED的人工感知神经网络,模拟了人类神经系统中的多通路信号传递过程。 人脑神经元的应答是即时、高度并行、复杂输出的,构建仿生神经形态电子系统是类脑计算领域的重要研究课题。在交流脉冲驱动下,nano-LED生成具有记忆效应的电致光信号脉冲,利用光脉冲波形中的特征波峰对多个分布式传感器的电信号进行编码,并在人工感知神经网络中无串扰同步传输。构建的人工感知神经网络成功模拟了人脑的触觉感知,识别准确率达到98.88%。 图1 GaN/Al2O3界面STEM-HAADF刃位错直接观测图像及原子结构示意 图2 GaN/Al2O3界面穿透刃位错演化机制 图3基于记忆电致发光的传入神经系统示意 查看详细>>

来源: 点击量:2

3 中国科学家提出新的10MJ激光装置概念 2024-07-19

我们都知道可控热核聚变以其稳定性、清洁性、安全性和资源的丰富性,被广泛认为是人类的终极能源解决方案。既然提到了激光聚变大家可能印象最深的就是美国国家点火装置NIF在2022年底成功实现了点火,这也引发了全球对聚变能源的极大兴趣。尽管NIF取得了最高靶增益约2.4的成就,但由于激光能量、腔体设计以及早期激光技术的限制,它还未能实现聚变能源所需的30至100的高靶增益,且每天的实验次数也仅限于3至4次。 为了克服这些限制,中国工程物理研究院上海激光等离子体研究所与北京应用物理与计算数学研究所的科研团队合作,提出了一种新一代高增益聚变装置的概念设计。这款10MJ激光装置旨在实现30至100的靶增益。如上文中描述的它具备高效、节能、紧凑和成本效益高的特点,能够每30分钟进行一次实验,并且能够根据实验需求,在同一次实验中提供二倍频、三倍频、四倍频等多种激光频率的混合打靶能力,以适应不同的激光聚变方法。其设计成本与美国的NIF相当,可以说这个概念为聚变能源的路线选择和可行性研究提供了新的工具。 在10MJ激光装置的概念设计中,采用了以下创新技术: 多前端及超弹簧光技术,以降低激光与等离子体之间的不稳定性。 近场空间分离放大预脉冲和主脉冲,以提升能量转换效率。 使用具有低发射截面、长荧光寿命和高储能密度的激光材料,实现高激光能量通量的放大。 环形截面水冷氙灯和荧光转换隔膜材料的应用,提高泵浦光到激光能量的转换效率和打靶频率。 基于角度敏感薄膜的近场多程劈板放大器,简化系统结构,提高能量抽取效率。 结合近场三程放大的双程放大构型,显著减少放大器占用空间,实现装置的紧凑化。 基于角谱敏感非线性晶体的空间滤波技术,进一步压缩滤波器空间,提高装置紧凑性。 非共线频率变换的波束合成系统,提高在较小F数和相同光学元件负载下的输出激光能量。 现代化的测控技术,提高测量和控制的精确度。 以靶室为中心的半地下整体布局,节省空间、降低成本并提高环境友好性;同时采用六孔球腔球对称辐射驱动源路线下的理想激光排布方案,获取所需的球对称辐射源,满足多种激光聚变方式的需求。 中国工程物理研究院上海激光等离子体研究所的隋展研究员提出了上述的先进激光技术。与此同时,北京应用物理与计算数学研究所的蓝可研究员则专注于确保这些技术能够满足物理需求。两位研究员携手撰写了这篇关于10MJ激光装置概念设计的论文。 这篇论文的发表,不仅展示了中国在激光聚变技术领域的创新和突破,也体现了科研团队在实现高效、低成本聚变能源研究方面的努力和成果。通过这些新技术的应用,10MJ激光装置有望在聚变能源研究中发挥重要作用,为未来的能源发展提供新的可能性。 查看详细>>

来源: 点击量:319

4 中国科大成功观测双光子空间波函数动力学演化 2024-07-19

中国科学技术大学郭光灿院士团队在量子测量与传感研究中取得重要进展。该团队李传锋、许金时、刘曌地等人首次提出并实验实现了量子夏克–哈特曼(Shack–Hartmann)波前传感器。通过重构双光子横向空间波函数,观测了位置纠缠光子对在自由空间传播时振幅关联和相位关联的动力学演化。该成果7月16日发表在国际知名期刊《物理评论快报》上。 光场相位分布的测量是一个关键问题,特别是在自适应光学中,可用来校正像差的影响。研究团队在经典波前传感方面做了一系列的工作,包括研究了基于光子玻姆轨迹实验装置的弱测量波前传感,实现了更高的空间分辨率,以及提出并数值模拟了基于弱测量波前传感的纠缠光子波前重构等。 经典光学中,夏克–哈特曼波前传感是一种广泛使用的相位测量方法,它使用微透镜阵列,将光场在局部空间的传播方向转换为聚焦光斑的位移,从而测量得到光场相位梯度的分布,并重构出相位。其空间分辨率由透镜尺寸决定。研究团队受此启发,提出并实现了量子夏克–哈特曼波前传感器,观测到位置纠缠光子对空间波函数的动力学演化。双光子射入透镜阵列后,在其后焦面探测双光子的联合空间概率分布,如图1所示。通过对单个微透镜孔径内所有点的条件概率分布求和并利用梯度算法可以重构出相位,结合强度分布即可得到双光子空间波函数。研究团队测量了自发参量下转换产生的光子对在自由空间不同演化时间的空间波函数,观测到双光子在自由空间传播过程中振幅关联逐渐变弱,而相位关联逐渐变强的过程。研究组还测量了双光子在动量空间使用空间光调制器加载双曲抛物面相位后的波函数,如图2所示。该方法作为量子自适应光学这一全新领域的关键技术,在未来可应用于量子通信、天文观测和多光子相互作用的检验中。 图1.量子波前传感原理示意图(小图)和实验装置图 图2.实验结果图,展现了不同距离传播和相位调制后的波函数。各组数据第一列是双光子纵坐标取中心值时横坐标的联合波函数,第二列是中心点的条件波函数,第三列是中心右上方一点的条件波函数;第一行是理论值,第二行是实验重构结果 查看详细>>

来源: 点击量:37

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190