光电情报网信息监测服务平台 Chinese Academy of Sciences | optic science and technology information network system

微信公众号

您当前的位置: 首页 > 综合资讯

综合资讯共计 6,303 条信息

      全选  导出

1 探索 | 可用于红外光子器件和红外生物成像的高质量纳米晶体 2024-07-12

量子点被授予了2023年诺贝尔化学奖,其应用领域已经非常广泛,从显示器和LED到化学反应催化和生物成像等。这些半导体纳米晶体非常小,只有纳米量级,其特性(如颜色)与尺寸有关,并开始表现出量子特性。这项技术已经取得了长足的发展,但仅限于可见光谱,在电磁波谱的紫外和红外区域还有待开发。 据麦姆斯咨询介绍,美国伊利诺伊大学香槟分校生物工程系教授Andrew Smith和博士后研究员Wonseok Lee在Nature Synthesis期刊上发表了一项新研究,他们利用已经开发成熟的可见光谱硒化镉(CdSe)前体,开发出了可吸收和发射红外线的硒化汞(HgSe)和硒镉汞(HgCdSe)纳米晶体。这些新纳米晶体保留了母体CdSe纳米晶体的理想特性,包括尺寸、形状和均匀性。 Smith介绍说:“这是红外量子点达到可见光谱量子点相同质量水平的首个实例。” 虽然纳米晶体技术已经发展了50多年,但只有在可见光区域工作的纳米晶体才取得了长足的进步。Smith解释说:“它们已成为显示设备的重要组成部分,也是很多光吸收或发光技术的重要组成部分。最终拥有巨大的市场价值,才是开发某种技术的内在推动力。” 除了市场对可见光谱纳米晶体的需求,红外材料在化学方面的难度更大,因为红外光比可见光谱的波长更长、能量更低。要实现红外光的吸收和发射,必须使用元素周期表中位置更低的重元素。使用这些元素进行化学反应更加困难,会产生更多不想要的副反应,反应的可预测性也更低。这些元素还容易降解,容易受到环境变化(如水分)的影响。 量子点纳米晶体可以由硅等半导体制成,也可以是二元或三元的。混合两种元素可以产生许多不同的特性。将三种元素混合在一起可以产生成倍增加的特性。 Smith说:“我们一直在关注三元合金HgCdSe,并认为它有望成为一种‘完美’材料。通过改变镉原子和汞原子的比例,我们基本可以获得想要的任何特性。它可以跨越巨大的电磁波谱范围,从整个红外波段到整个可见光谱,实现广泛的特性。” Smith从读研究生时就开始尝试制造这种材料,但一直没有成功,甚至在其他广泛的研究领域也没有成功的报道,直到现在。 他说:“我们采用的方法是把已经完善的可见光量子点CdSe作为‘牺牲模具’,它被认为是最成熟的量子点。” 当将镉原子替换为汞原子后,瞬间就将一切转入了红外光谱,同时保留了需要的所有特性:强光吸收、强光发射和均匀性。 为此,Smith和Lee放弃了合成纳米晶体的传统方法,即把前体元素混合在一起。在适当的条件下,它们会分解成所需的纳米晶体形式。事实证明,还没有人找到汞、镉和硒的有效合成条件。 “Lee开发了一种名为扩散增强阳离子交换的新工艺。”史密斯说,“在这种工艺中,我们添加了第四种元素银,银会在材料中引入缺陷,使所有物质均匀地混合在一起。这就解决了整个问题。” 虽然量子点有许多应用,但其中,红外量子点用作成像分子探针有可能带来重大影响。在这种应用,可以将红外量子点引入生物系统,然后在组织中进行检测。由于大多数量子点发射的是可见光谱,因而只有靠近皮肤表面的发射才能被检测到。然而,生物组织在红外光下是相当透明的,因此,利用红外量子点可以探测更深层的组织。 小鼠是大多数疾病的标准模型,Smith解释说,有了能发射红外线的量子点,研究人员就能几乎完全透视活体啮齿动物,观察它们的生理机能和全身特定分子的位置。这将有助于更好地了解生物过程,开发治疗方法,而不必牺牲小鼠,从而改善临床前的药物开发。 查看详细>>

来源: 点击量:1

2 布局 | 美国商务部宣布将投入16亿美元推动先进芯片封装技术研发 2024-07-12

近日,美国商务部宣布,将投入高达16亿美元资金用于推动芯片封装技术的研发。这一举措是美国政府2023年公布的国家先进封装制造计划(NAPMP)的一部分,旨在加速美国国内先进封装产能的建设。 先进封装技术在提升芯片性能、推动摩尔定律延续、支持AI和高性能计算、降低成本、促进国内产业链发展以及广泛应用等方面都具有重要意义。因此,先进封装技术是半导体产业链中不可或缺的关键环节。 2023年11月,美国政府宣布将投入约30亿美元的资金,专门用于资助“国家先进封装制造计划”(NAPMP),这是《芯片与科学法案》的首项研发投资项目。这些资金将主要用于建立先进的封装示范设施,加快封装、设备和工艺开发。 同时,美国商务部下属的国家标准与技术研究所(NIST)发布了NAPMP愿景文件,明确了资金使用的具体领域,包括封装材料与基底等。 据悉,这笔高达16亿美元资金将通过奖励金的形式提供给创新项目,每份奖励金不超过1.5亿美元,以撬动来自工业界和学术界的私营部门投资。 这笔资金是《芯片法案》授权资金的一部分,目的是帮助企业在芯片之间创建更快的数据传输方式以及管理芯片产生的热量等领域进行创新。 美国商务部副部长兼国家标准与技术研究所所长劳里·洛卡西奥(Laurie Locascio)表示,“我们在先进封装领域的研发工作将重点关注高性能计算(HPC)和低功耗电子产品等高需求应用,这两者都是实现AI领导地位所必需的。” 根据资金补贴要求,资助项目需与五个研发领域中的一个或多个相关,包括设备和工具、电力输送和热管理、连接器技术(包括光子学和射频)、Chiplet生态系统以及电子设计自动化(EDA)。 劳里·洛卡西奥还表示,国家先进封装制造计划将通过强大的研发驱动创新,使美国的封装行业超越世界水平。在十年内,通过美国《芯片与科学法案》资助的研发,我们将创建一个国内封装产业。在这个产业中,美国和国外生产的先进节点芯片可以在美国进行封装,并且通过领先的封装能力实现创新设计和架构。 美国此举希望通过大规模的研发投资,提升美国在先进封装领域的领导地位,从而增强其在全球半导体市场的竞争力。同时,通过加大关键基础研发投入,扩大当前有限的先进制造能力,形成匹配美国芯片制造规模的封装源动力,从而提高整个半导体产业供应链的安全性。 查看详细>>

来源: 点击量:394

3 突破 | 兰州化物所采用3D打印柔性水凝胶前驱体制备复杂结构陶瓷 2024-07-11

具有复杂几何形状的聚合物衍生陶瓷在环境科学和生物医学等工程领域具有应用价值。然而,固有脆性和刚性的树脂基陶瓷前驱体难以实现结构层次跨越不同尺度的陶瓷构件,限制了复杂陶瓷器件的高精度制造。柔性聚合物陶瓷前驱体的变形能力为实现大跨度结构陶瓷提供了一种理想的选择,但现有的陶瓷前驱体柔韧性和重构性差。因此,发展可3D打印的新型柔性陶瓷前驱体对制造复杂的无支撑、大跨度结构陶瓷器件至关重要。 近日,中国科学院兰州化学物理研究所润滑材料重点实验室3D打印摩擦器件组采用3D打印柔性水凝胶前驱体制备复杂结构陶瓷。该团队发展了利用3D打印水凝胶柔性骨架辅助高几何复杂性、高打印精度和形状保真度陶瓷成形的新方案。该方案解决了传统陶瓷制造因脆性和刚性导致的形状复杂性和尺寸收缩问题,在立体电路、生物医学和功能催化等领域展现出应用价值。 该团队受折纸/剪纸艺术的启发,以水性无机粘结剂磷酸二氢铝溶胶为水凝胶单体分散介质,将水凝胶单体和纳米陶瓷粉体混合来制备光敏性水凝胶陶瓷浆料;利用光固化3D打印获得了具有优异的延展性、形状适应性、抗疲劳性且可二次变形的水凝胶柔性骨架;依次经过脱水干燥、低温脱脂和高温烧结等步骤,实现了具有超低收缩、高陶瓷产率和形状保真度的悬空大跨度陶瓷结构。该工作设计的柔性水凝胶基陶瓷前驱体能够实现从平面形状到3D立体结构的转变,突破了传统硬质/脆性陶瓷前驱体制造复杂陶瓷结构的局限。 生活中常见的大跨度悬空结构较难通过传统的光固化3D打印实现。为此,科研人员将柔性的二维水凝胶形状如圆柱形、线状、弹簧和漩涡经过挤压、编织、扭曲和拉伸等连续变形,可以重新塑造成具有多尺度和大跨度的复杂三维立体结构,如灯笼、中国结、弹簧卷和螺旋。 基于这一方法,研究人员制造出无支撑且大跨度的陶瓷三维电路。这种陶瓷三维电路能够较好地点亮LED灯带。此外,研究发现,利用水凝胶柔性骨架的可变形性,可按需或个性化制造具有颅骨缺损形状的陶瓷结构以实现骨缺陷部位修复。同时,该陶瓷结构可以结合表面改性策略,设计并制备高性能的复杂结构催化陶瓷器件。这一器件具有优良的催化活性和稳定性。科研人员拓展了上述新方法在三维电路、生物医用及功能催化领域的潜在应用。 光固化3D打印水凝胶柔性前驱体辅助制造复杂陶瓷结构的方案 查看详细>>

来源: 点击量:7

4 前沿 | 新形状光子为先进光学技术打开大门 2024-07-11

荷兰屯特大学(University of Twente)的研究人员对构成光的基本粒子——光子有了重要的认识。与原子周围的电子相比,光子的"行为"种类多得惊人,同时也更容易控制。 这些新见解具有广泛的应用前景,从智能LED照明到用量子电路控制的新型光子信息比特,再到灵敏的纳米传感器。 在光子晶体超晶格中出现几个光子轨道。 在原子中,称为电子的微小基本粒子以称为轨道的形状占据原子核周围的区域。这些轨道给出了在特定空间区域找到电子的概率。量子力学决定了这些轨道的形状和能量。与电子类似,研究人员也用轨道来描述最有可能发现光子的空间区域。 无论你设计出何种狂野的形状 屯特大学的研究人员对这些光子轨道进行了研究,发现只要精心设计特定的材料,他们就能创造并控制这些具有各种形状和对称性的轨道。这些成果有望应用于先进的光学技术和量子计算。 第一作者科宗解释说:"在化学教科书中,电子总是围绕着位于轨道中心的微小原子核运行。因此,电子轨道的形状不能偏离完美的球形。而对于光子,通过将不同的光学材料以设计好的空间排列组合在一起,轨道的形状可以随心所欲"。 更容易设计 研究人员进行了一项计算研究,以了解光子被限制在由微小孔隙(光子晶体)组成的特定三维纳米结构中时的行为。这些空腔被有意设计成具有缺陷,从而形成一种上层结构,将光子态与周围环境隔离开来。 物理学家沃斯和拉根迪克说:"鉴于纳米技术的工具箱非常丰富,设计具有新颖光子轨道的别致纳米结构要比改造原子以实现新颖电子轨道和化学性质容易得多。" 先进的光学技术 光子轨道对于开发高效照明、量子计算和灵敏光子传感器等先进光学技术非常重要。研究人员还研究了这些纳米结构如何提高光学态的局部密度,这对于空腔量子电动力学的应用非常重要。 他们发现,具有较小缺陷的结构比具有较大缺陷的结构具有更大的增强作用。这使它们更适合集成量子点和创建单光子网络。 查看详细>>

来源: 点击量:4

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190