光电情报网信息监测服务平台 Chinese Academy of Sciences | optic science and technology information network system

微信公众号

您当前的位置: 首页 > 科技进展

科技进展共计 1,391 条信息

      全选  导出

1 洞见 | 感知技术正在朝“五化”方向发展,机器人需要微纳传感技术 2024-07-08

近日,俄罗斯工程院外籍院士孙立宁在中国(蚌埠)MEMS智能传感器产业发展大会上表示,微纳感知技术将促进人形机器人智能化的发展。 机器人作为制造业“王冠顶部的明珠”,其概念设计和批量制造已有一定进展,但是未来的生产和生活方式面临越来越复杂的环境,传统机器人如果没有智能技术的加持将无法满足使用需求。 随着生成式人工智能与人形机器人的融合,机器人将开启“具身智能”时代。在AI技术的赋能之下,机器人与人形机器人将超越娱乐工具的概念,通过自主学习和深度学习掌握多种技能并演化成为一种智能生产力工具。 孙立宁指出,机器人智能化发展的关键技术围绕着“感知、控制、交互”三方面,而感知技术是人形机器人行为决策和行为控制的前提。人形机器人需要大量智能传感技术进行支撑,如覆盖本体大面积的触觉感知电子皮肤、手指多维力传感与手掌触觉传感、关节力矩传感、足底力传感以及压力步态识别反馈等。机器人的视觉、触觉等系统的融合感知,配合AI大模型,最终将实现AI视触融合,并产生智能识别、智能规划、智能抓取、智能交互等新功能。 1月底,工业和信息化部等七部门印发《关于推动未来产业创新发展的实施意见》(以下简称《意见》)。《意见》指出,要突破机器人高转矩密度伺服电机、高动态运动规划与控制、仿生感知与认知、智能灵巧手、电子皮肤等核心技术。 孙立宁表示,面向智能机器人领域,感知技术正在朝着微型化、集成化、多功能化、数字化以及智能化的方向发展,而微纳感知技术将发挥重要作用。 在工业领域,自驱动大面积智能皮肤搭载于工业机器人前臂,可帮助机械臂实现紧急避障和安全急停,提升工业机器人的环境感知能力;在医疗领域,以消化内镜微创手术机器人的应用为例,末端三维力感知之后可帮助机器人在手术中更精准地感应手术夹钳受力、表面变形传导以及电阻信号和微处理芯片放大信号。 这类机器人灵巧手的创新发展,一方面需要MEMS技术、封装技术、电流技术的高度融合,另一方面也要对抓持物体的材料变化保持敏感性。孙立宁表示,机器人通过抓取物体的重量和摩擦感知和辨别所抓取的材料,这需要柔性传感系统,即使用液态金属作为感知材料,并保证柔软、省电、轻量化的研发需求。 查看详细>>

来源: 点击量:2

2 探索 | 从有序到无序态的微腔复杂激光器 2024-07-08

天津航海仪器研究所和电子科技大学、深圳大学的研究人员合作概述了微腔复杂激光器的产生、调控及前沿应用进展。他们从微腔结构无序度渐增的视角出发,系统性地概述了各种类型的微腔复杂激光器,并主要介绍了无序微腔激光器的历史发展、激光特性、调控方法和在不同学科的应用场景,最后对微腔复杂激光器的发展趋势进行了深入讨论。 典型的激光器由三个基本元素组成:泵源、放大受激辐射的增益介质以及产生光学共振的腔体结构。当激光器的腔体尺寸接近微米或亚微米级时,它就成为当前学术界的研究热点之一:微腔激光器,其能在小体积内实现显著的光与物质相互作用。将微腔与复杂系统相结合,例如引入不规则或无序的腔体边界,亦或将复杂、无序的工作介质引入微腔,都会增加激光输出的自由度,无序腔体的物理不可克隆特性带来激光参数的多维调控方法,并可以拓展其应用潜力。相关成果以“Microcavity complex lasers:from order to disorder”为题,以特邀综述的形式在线发表于Annalen Der Physik。 微腔复杂激光器的研究体系 随机微腔激光器的不同系统 本文首次从不同腔体维度的角度对随机微腔激光器进行分类。这种区分不仅突出了随机微腔激光在不同维度上的独特输出特性,也阐明了随机微腔的尺寸差异在各种调控和应用领域的优势。其中三维固态微腔通常具有较小的模体积,从而实现更强的光物质相互作用。由于其三维封闭结构,光场可以在三个维度上高度局域化,通常具有高品质因子(Q因子)。这些特性使其适用于高精度传感、光子存储、量子信息处理等先进技术领域。 而开放的二维薄膜系统是构建无序平面结构的理想平台,薄膜系统可以作为具有集成增益和散射的二维无序介质平面,积极参与随机激光的生成。且“平面波导效应”使激光的耦合和收集更加容易。随着腔体维度进一步降低,将反馈和增益介质集成到一维波导中,可以抑制径向光散射,同时增强轴向光的共振和耦合,这种集成方式最终提高了激光产生和耦合的效率。 随机微腔激光器的调控特性 传统激光器的多种指标,如相干性、阈值、输出方向和偏振特性等,都是衡量激光器输出性能的关键标准。与具有固定对称腔体的传统激光器相比,随机微腔激光器在参数调控方面提供了更大的灵活性,体现在包括时域、光谱域和空域等多个维度,突显了随机微腔激光的多维可控性。 例如,研究人员通过优化泵浦参数、调整散射强度和改变增益介质的发光效率来调节随机激光的阈值。且随机激光的输出模式本质上是无序的,表现为低空间相干性(无散斑)和低时间相干性(具有大量纵模),与通常仅有单一输出模式的传统激光器相比,随机激光的低相干性为研究模式调制提供了众多可控自由度。目前,学术界广泛采用的方法是通过泵浦自适应调整来实现随机激光的定向输出、单一光谱模式及其对应空间模式的选择输出。此外,随机激光的方向性与散射路径密切相关,通过优化微腔载体、优化泵浦形状以及利用外场控制内部介质等方式,可以有效减少随机激光器的全向发射缺陷。 随机微腔激光器的应用特性 低空间相干性、模式随机性和对环境敏感特性等为随机微腔激光器的应用提供了许多有利因素。随着随机激光的模式控制和方向调控问题的解决,这种独特的光源越来越多地应用于成像、医学诊断、传感、信息通信等领域。 作为微纳尺度的无序微腔激光器,随机微腔激光器对环境变化非常敏感,其参数特性可以响应各种监测外部环境的敏感指标,如温度、湿度、pH值、液体浓度、折射率等,为实现高灵敏度的传感应用创造了一个优越的平台。 在成像领域,理想的光源应具有高光谱密度、强定向输出和低空间相干性,以防止干涉散斑效应。研究人员们通过在钙钛矿、生物膜、液晶散射体和细胞组织等载体中均验证了随机激光在无散斑成像中的优势。在医学诊断中,随机微腔激光可以携带来自生物宿主的散射信息,成功应用于检测各种生物组织,为无创医疗诊断提供了便利。 总结与展望 本综述介绍了自然界和人工环境中广泛存在的无序结构中包含的复杂激光现象,定义了微腔复杂激光的概念,梳理了不同类型的微腔复杂激光,并重点介绍了随机微腔激光的发展、调控及应用。未来,对无序微腔结构和复杂激光生成机制的系统分析将变得更加完善。随着材料科学和纳米技术的不断进步,可预期将制造出更加精细和功能化的无序微腔结构,在推动基础研究和实际应用方面具有巨大潜力。 查看详细>>

来源: 点击量:1

3 上海微系统所石墨烯导热膜尺寸效应研究取得进展 2024-07-03

石墨烯导热膜是电子器件和系统重要的热管理材料。近日,中国科学院上海微系统与信息技术研究所纳米材料与器件实验室丁古巧团队在石墨烯导热膜尺寸效应研究方面取得进展。该工作通过建立亚微米-微米氧化石墨烯原料横向尺寸与导热膜热导率之间的联系,深化了对于3000℃高温下氧化石墨烯组装体还原重组过程的认知,为组装石墨烯等二维材料构建高性能宏观体提供了新思路。 研究发现,石墨烯膜的热导率与组装石墨烯膜原料的横向尺寸相关,一般大尺寸原料利于提升其导热性能。这是由于原料片层的横向尺寸越大,石墨烯膜中片层间的界面越少,越利于热输运。因此,选择大尺寸的氧化石墨烯原料,通过涂布、干燥、石墨化和压延等工艺来制备石墨烯导热膜,是制备高性能石墨烯导热膜的重要策略。然而,大尺寸氧化石墨烯的批量化制备面临技术挑战,并存在制备过程繁琐、低产率和高成本等问题。同时,在组装过程中,大尺寸氧化石墨烯对高温过程产生气体的逸出存在更显著的抑制作用,导致导热膜引入的皱纹和微孔等结构缺陷更多。这限制了大尺寸原料在制备高性能石墨烯方面的优势。 该团队探讨了氧化石墨烯尺寸变化对石墨烯导热膜性能的影响即尺寸效应。为了消除原料片层厚度等其他参数的影响,从同一氧化石墨原料出发,该研究采用机械剪切方式制备了平均横向尺寸覆盖亚微米至微米尺度的11组氧化石墨烯。基于此,研究利用完全一致的刮刀涂布、干燥、石墨化、压延等工艺组装制备石墨烯导热膜。按照原料横向尺寸,这些石墨烯导热膜可分为大尺寸氧化石墨烯制备的导热膜、常规尺寸氧化石墨烯制备的导热膜、超小尺寸氧化石墨烯制备的导热膜。在亚微米尺寸范围内,石墨烯导热膜的横向热导率与氧化石墨烯原料横向尺寸呈现负相关关系即负尺寸效应,这与微米范围内的规律相反。进一步,结构分析表明,超小尺寸氧化石墨烯在高温石墨化过程更利于气体的排出而避免缺陷产生,且小晶粒在高温石墨化过程中易于融合和长大。这表明选择亚微米超小尺寸氧化石墨烯是制备高性能石墨烯导热膜的重要策略。同时,相对于大尺寸氧化石墨烯原料,亚微米超小尺寸氧化石墨烯的更易获得,规模化制备难度和成本更低。 基于上述成果,该团队以超小尺寸氧化石墨烯为原料,在~110μm膜厚时实现了1550.06±12.99 W/mK的横向热导率,超过此前文献报道的水平。该水平与使用大尺寸氧化石墨烯制备的导热膜相近,且纵向热导率更高。在实际应用场景中,相较于裸芯片,芯片表面温度在装载石墨烯导热膜后有所降低,最大降温幅度达到21.2℃,芯片表面温度分布更加均匀。因此,超小尺寸氧化石墨烯制备的高性能导热膜可以较好地满足电子器件实际热管理需求。这为制备高性能石墨烯导热膜提供了新思路,并为提升石墨烯导热膜纵向导热性能提供了新线索。 原料尺寸对石墨烯导热膜热导率的影响机制 石墨烯导热膜的传热性能 查看详细>>

来源: 点击量:516

4 纳米3D打印异质金属氧化物新方法 2024-07-03

近日,华中科技大学武汉光电国家研究中心熊伟教授团队提出了一种新颖的金属氧化物纳米3D打印方法。研究团队受组氨酸在血液中运输微量元素的启发,研究制备出了金属离子协同配位的水溶性(MISCWS)树脂,进而实现了各种金属氧化物的3D微纳结构与功能器件的制造。此外,MISCWS树脂的协同配位效应使聚合物内的无机质量分数增加了2.54倍,有效地降低了金属氧化物3D微纳结构的形貌畸变。该研究为制造基于金属氧化物的各种微型功能器件铺平了道路,相关研究成果以3D Nanoprinting of Heterogenous Metal Oxides with High Shape Fidelity为题发表在《Advanced Materials》上。 金属氧化物具有半导体性、压电性、光学透明性和赝电容性等独特性质,是制造各种功能器件和集成系统所不可缺少的材料。3D微纳结构不仅能够大幅提升金属氧化物功能器件的性能,还能够实现一些2D器件无法实现的功能,如3D光子晶体、各向异性的机电响应和高强度的轻质超材料结构。得益于亚100纳米分辨率下几乎不受限制的3D打印自由度,双光子聚合成形技术具有打印精细复杂金属氧化物3D结构的潜力。近年来,尽管金属氧化物的微纳3D打印已取得了诸多进展,但一直以来始终面临着材料种类受限、形貌畸变严重、制造速度低下以及异质集成困难的挑战。 针对上述难点,熊伟教授团队设计出了一种咪唑和丙烯酸协同配位水中金属离子的物理机制,并利用该机制开发出了一系列MISCWS树脂,用于各种金属氧化物的纳米级3D打印,包括MnO2、Cr2O3、Co3O4、Al2O3、NiO、MgO和ZnO等,如图1所示。此外,丙烯酸和1-乙烯基咪唑与金属离子的协同配位作用可使得3D聚合物模板中的金属离子含量增加到30.5 wt%。该含量比以往文献中所报道的金属含量值至少高出2.54倍,进而有效缓解了热解后结构的形貌畸变。 研究团队通过对含有不同金属离子的MISCWS树脂进行顺序的激光3D打印,制备出了具有两种金属元素嵌套的二维“太极”结构、三维“凯特环”结构以及具有四种金属元素嵌套的“环”结构(图2),从而实现了高精度多材料的异质打印,为后续制造三维集成微系统铺平了道路。 研究团队还进一步制造出了3D多孔的氧化锌气体传感器,在200 ppm NO2环境中灵敏度高达111.3万,比传统的二维传感器灵敏度至少高出10倍。此外,该传感器还展现出了良好的气体选择性(对NO2的灵敏度至少比其他气体高4个数量级)和线性度(相关系数为0.957),如图3所示。 图1.MISCWS树脂的配备原理及利用该树脂打印出的金属氧化物3D微纳结构 图2.多种材料的纳米级异质3D打印 图3.3D氧化锌微传感器的气体探测性能 查看详细>>

来源: 点击量:92

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190