光电情报网信息监测服务平台 Chinese Academy of Sciences | optic science and technology information network system

微信公众号

  • 中国科大首次实现光子的分数量子反常霍尔态
  • 基于相变的可重构微纳光学器件
  • 日本将对半导体量子相关4品类等实施出口管制
  • 6G技术可望于2030年实现商用
  • 前沿 | 科学家在自恢复摩擦/力致发光研究方面获进展
  • 核聚变实验实现两方面关键技术突破
  • 福建物构所光控动态共价化学研究取得系列新进展
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

日本将对半导体量子相关4品类等实施出口管制

据日本媒体报道,日本经济产业省26日宣布,将半导体和量子相关的4个技术品类纳入出口管制对象。这些技术在面向所有国家和地区出口时均须事前获得官方许可。报道认为,在日本这样拥有相应技术的国家先行实施出口限制,旨在防止新兴技术被用于军事领域。 日本经产省目前已就此对《外汇及外国贸易法》相关法规(省令)做出修改,在公开征求意见阶段结束后,相关法规将正式公布并最早将于7月生效。日媒称,用于获取集成电路图像的电子显微镜、全环绕栅极技术等将成为新的出口管制对象。这些品类的产品尚未纳入被称为「瓦森纳协定」的多边出口管制协定,日本政府此举也将相应提高出口管制的实效性。 报道表示,拥有技术的国家先行实施限制,以防止新兴技术被转用于军事。这一省令将从4月26日到5月25日征集公众意见,意见征集结束后公布,并在2个月内实施。新的出口管制对象还包括用来获取集成电路图像的电子显微镜等,在部分国家,这些品类早已被列为出口管制对象。 目前,国际社会原则上在《瓦森纳协定》(WA)的框架下讨论限制品类,各国再根据《瓦森纳协定》下达成的共识制定本国的限制清单。然而在《瓦森纳协定》中增加新的品类需要所有成员国同意,所以很难第一时间跟上技术的进步,日本此次新增的限制品类也将按计划添加到《瓦森纳协定》中。 本次扩大技术出口管制范围,将使日本企业向海外出口尖端技术的限制进一步加强。据日媒报道,日本经产省24日公布关于修改出口管制方针的中期报告。报告提出,针对可能被用于军事领域的尖端材料和设备,在企业向海外进行技术转让时,将强化企业方面的事前报告义务。 报告提出的新方案主要针对「军民两用技术」加强监管。对于日本在国际市场上所占份额较高、其他国家有兴趣获取的技术转让,如果以在其他国家和地区生产产品的形式进行技术转让,方案要求企业事先向经产省报告。此外,出口企业还必须确认出口目的地国家不将出口产品用于制造武器。对于军事风险较高的品种,除了面向朝鲜等现有「武器禁运国」外,限制范围将扩展到面向俄罗斯、中国等「一般国家」交易行为。如果日本政府认为有安全顾虑,经产大臣可要求企业申请出口许可,最终由政府决定是否出口。 实际上,近年来日本追随美国不断对华开展和加大出口管制。去年年初,美日荷便就尖端芯片技术和对华限制达成协议。去年5月23日,日本经产省公布《外汇法》修正案,将先进芯片制造所需的23个品类的半导体材料和设备列入出口管制对象,其中包括了多种关键性材料,例如氟化氢、蚀刻液、聚酰亚胺和高纯度氮等。 具体而言,涉及光刻/曝光领域的有4项,即先进制程的光刻机/涂胶显影机/掩膜及制造设备;涉及刻蚀领域的有3项,分别是湿法/干法/各向异性的高端刻蚀;涉及清洗领域的有3项:即铜氧化膜、干燥法去除表面氧化物、晶圆表面改性后单片清洗。涉及最多的是薄膜领域,达11项。此外,涉及热处理和测试领域的各1项。 日本政府规定,新增的23个品类产品除了面向友好国家等42个国家和地区之外,向其他地区的出口都需要获得个别许可。据了解,这意味着今后日本企业在涉及该领域产品对华出口时,必须获得经日本经济产业大臣审批的单独许可证后方可对华实施出口;而单独许可证所需申请文件类型及手续将极为繁杂,其中包括需要追加提交证明用户业务资质、出口产品用途、用户承诺文件等诸多附件资料。 管制于去年7月23正式生效。对此,中国商务部发言人曾表示,希望日方遵守国际经贸规则,避免对两国经贸合作进行政治干扰、限制企业正常自主经营和企业间公平竞争。

2024-05-06  (点击量:3)

集成光子学的国际路线图

荷兰的PhotonDelta和麻省理工学院微光子学中心已经制定了集成光子学的国际路线图。该计划涉及400多个组织的贡献,包括空中客车公司,Meta,美国宇航局,杜邦电子公司,通用汽车公司,欧洲航天局和沃达丰Ziggo。 集成光子学系统路线图(IPSR-I)是在过去3年中制定出来的,它确定了集成光子学可以彻底改变射频光子学(无线通信)、3D成像、数据通信和传感等行业的关键技术差距。这对欧洲半导体公司来说是一个重大推动力。 光子学与电子学的集成是创造更小、更快、更节能的器件的关键推动因素。该集成有可能扩展功能并创建大量新应用程序,并有助于解锁许多领域的重大进步,包括自动驾驶汽车、数据电信和医疗保健。集成光子学也是用于传感和通信应用的光生成、处理和检测的技术。 IPSR-I描述了来自100多个讲习班和13个会议的400多名专家达成的共识。它全面概述了PIC批量生产的主要技术差距,并详细分析了集成光子学行业为实现其潜力而需要克服的挑战。 PhotonDelta首席技术官Peter van Arkel表示:「利用综合光子学行业和学术界的所有研发资源来解决IPSR-I确定的技术差距,将有助于以惊人的方式解决巨大的社会挑战。路线图的核心是集成光子学行业的全球方法,以团结起来应对核心挑战。对于如此多样化的贡献者群体,就这些技术差距达成共识是非常具有挑战性的。从结果来看,这绝对是值得的。」 麻省理工学院材料科学与工程托马斯·洛德教授莱昂内尔·基默林(Lionel Kimerling)说:「电子光子集成有能力从根本上改变许多行业,并解锁一系列将改变我们生活的新技术。将这一愿景转变为大批量生产需要一个经过深思熟虑的计划,该计划建立在不同领域、组织和国家的大量专家的知识之上。这就是IPSR-I所追求的——它勾勒出一条清晰的前进方向,并指明了未来15年扩展性能和应用的创新学习曲线。」 光子集成电路(PIC)可以比电子集成电路更有效地处理和传输数据。与传统芯片一样,生产过程采用自动晶圆级技术进行。这使得芯片可以大规模生产,从而降低成本。 11亿欧元用于欧洲光子学供应链 PhotonDelta是一个由光子芯片技术组织组成的跨境生态系统,它筹集了公共和私人投资,到2030年,它的目标是创建一个拥有数百家公司的生态系统,服务于全球客户,晶圆产能达到每年100,000+。 整个行业对量子计算、医疗保健和通信的兴趣越来越大。数据网络巨头瞻博网络(Juniper)宣布,它将使用Tower Semiconductor的开放式光子学工艺开发套件(PDK)将其技术分拆到与Synopsys的合资企业中(尽管该套件已被英特尔收购),并宣布在苏格兰建立一个光子学中心,用于太空和量子研发。 PhotonDelta对荷兰的投资包括来自国家增长基金(Nationaal Groeifonds)的4.7亿欧元,其余部分由各种合作伙伴和利益相关者共同投资。这是荷兰政府国家计划的一部分,旨在巩固和扩大该国作为集成光子学世界领导者的地位。 PhotonDelta生态系统目前由26家公司、11家技术合作伙伴和12家研发合作伙伴组成。该组织已共同投资1.71亿欧元给有前途的光子学公司,包括Smart Photonics、PhotonsFirst、Surfix、MicroAlign、Solmates和Effect Photonics。 该计划将持续6年,将使PhotonDelta及其合作伙伴能够进一步投资于光子初创企业和规模化企业,扩大生产和研究设施,吸引和培训人才,推动采用,并开发世界一流的设计库。 光子集成电路将光子功能集成到微芯片中,以创建更小、更快、更节能的器件。PIC目前用于数据和电信行业,以降低每比特的能耗并提高速度,预计到2027年,数据和互联网的使用量将占全球电力消耗的10%左右,这些提供了一种限制对气候影响的方法。 「这项投资改变了游戏规则。这将使荷兰成为下一代半导体的发源地,这将对整个欧洲科技行业产生深远影响,「PhotonDelta首席执行官Ewit Roos说。 「持续的芯片短缺凸显了欧洲迫切需要为战略技术建立自己的生产能力。我们现在将能够支持数百家初创公司、研究人员、生产商和创新者,以推动这个行业的发展,这将与几十年前引入微电子技术一样具有影响力,「他说。 荷兰被认为是PIC技术开发的先驱,由于荷兰政府的持续支持,我们已经能够围绕它建立一个完整的供应链,成为全球公认的光子集成热点。 光子芯片是过去十年中最重要的技术突破之一。它们不仅允许创造更快、更便宜、更强大和更环保的设备,而且还使经济实惠的即时诊断或量子计算等激进的新创新成为现实。 PhotonDelta与埃因霍温理工大学(TU/e)、特温特大学(UT)、代尔夫特理工大学(TUD)、霍尔斯特中心、TNO、IMEC、PITC、CITC、霍尔斯特中心、OnePlanet、Smart Photonics、Lionix International、Effect Photonics、MantiSpectra、PhotonFirst、Phix和Bright Photonics合作。 它还包括与一家代工厂的战略合作伙伴关系,并与供应商Bruco、ASML、Aixtron、Solmates、芯片集成技术中心(CITC)、埃特博朗、爱尔兰廷德尔、萨兰工程、IMS和MicroAlign合作。

2024-04-10  (点击量:55)

中国科大首次实现光子的分数量子反常霍尔态

中国科学技术大学潘建伟、陆朝阳、陈明城教授等利用基于自主研发的Plasmonium(等离子体跃迁型)超导高非简谐性光学谐振器阵列,实现了光子间的非线性相互作用,并进一步在此系统中构建出作用于光子的等效磁场以构造人工规范场,在国际上首次实现了光子的分数量子反常霍尔态。这是利用“自底而上”的量子模拟方法进行量子物态和量子计算研究的重要进展。相关成果以长文的形式于北京时间5月3日发表在国际学术期刊《科学》(Science)上。 霍尔效应是指当电流通过置于磁场中的材料时,电子受到洛伦兹力的作用,在材料内部产生垂直于电流和磁场方向的电压。这个效应由美国科学家霍尔在1879年发现,并被广泛应用于电磁感测领域。1980年,德国科学家冯·克利钦发现在极低温和强磁场条件下,霍尔效应出现整数量子化的电导率平台。这一新现象超出了经典物理学的描述,被称为整数量子霍尔效应,它为精确测量电阻提供了标准。1981年,美籍华裔科学家崔琦和德国科学家施特默发现了分数量子霍尔效应。整数和分数量子霍尔效应的发现分别获得1985年和1998年诺贝尔物理学奖。 此后四十余年间,分数量子霍尔效应尤其受到了广泛的关注。由于最低朗道能级简并电子的相互作用,分数量子霍尔态展现出非平庸的多体纠缠,对其研究所衍生出的拓扑序、复合费米子等理论成果逐渐成为多体物理学的基本模型。与此同时,分数量子霍尔态可激发出局域的准粒子,这种准粒子具有奇异的分数统计和拓扑保护性质,有望成为拓扑量子计算的载体。 反常霍尔效应是指无需外部磁场的情况下观测到相关效应。2013年,中国研究团队观测到整数量子反常霍尔效应。2023年,美国和中国的研究团队分别独立在双层转角碲化钼中观测到分数量子反常霍尔效应。 传统的量子霍尔效应实验研究采用“自顶而下”的方式,即在特定材料的基础上,利用该材料已有的结构和性质实现制备量子霍尔态。通常情况下,需要极低温环境、极高的二维材料纯净度和极强的磁场,对实验要求较为苛刻。此外,传统“自顶而下”的方法难以对系统微观量子态进行单点位独立地操控和测量,一定程度上限制了其在量子信息科学中的应用。 与之相对地,人工搭建的量子系统结构清晰,灵活可控,是一种“自底而上”研究复杂量子物态的新范式。其优势包括:无需外磁场,通过变换耦合形式即可构造出等效人工规范场;通过对系统进行高精度可寻址的操控,可实现对高集成度量子系统微观性质的全面测量,并加以进一步可控的利用。这类技术被称为量子模拟,是“第二次量子革命”的重要内容,有望在近期应用于模拟经典计算困难的量子系统并达到“量子计算优越性”。 此前,国际上已经基于其开展了一些合成拓扑物态、研究拓扑性质的量子模拟工作。然而,由于以往系统中耦合形式和非线性强度的限制,人们一直未能在二维晶格中为光子构建人工规范场。 为解决这一重大挑战,团队在国际上自主研发并命名了一种新型超导量子比特Plasmonium,打破了目前主流的Transmon(传输子型)量子比特相干性与非简谐性之间的制约,用更高的非简谐性提供了光子间更强的排斥作用。进一步,团队通过交流耦合的方式构造出作用于光子的等效磁场,使光子绕晶格的流动可积累Berry(贝里)相位,解决了实现光子分数量子反常霍尔效应的两个关键难题。同时,这样的人造系统具有可寻址、单点位独立控制和读取,以及可编程性强的优势,为实验观测和操纵提供了新的手段。 在该项工作中,研究人员观测到了分数量子霍尔态独有的拓扑关联性质,验证了该系统的分数霍尔电导。同时,他们通过引入局域势场的方法,跟踪了准粒子的产生过程,证实了准粒子的不可压缩性质。 《科学》杂志审稿人高度评价这一工作,认为这一工作“是利用相互作用光子进行量子模拟的重大进展”(a significant advance in quantum simulation with interacting photons),“一种新颖的局域单点控制和自底而上的途径”(a novel form of local control and bottom-up approach),“有潜力为实现非阿贝尔拓扑态开辟一条新的途径,这是利用二维电子气材料的传统方法很难探测的”(potentially open new pathways for realizing non-Abelian topological states, which have been extremely challenging to probe in two-dimensional electron gases)。 诺贝尔物理学奖得主Frank Wilczek评价,这种“自底而上”、用人造原子构建哈密顿量的途径是一个“非常有前途的想法”(a very promising idea),这是一个令人印象深刻的实验(a very impressive experiment),为基于任意子的量子信息处理迈出了重要一步(a remarkable step)。沃尔夫奖获得者Peter Zoller评价,“这在科学和技术上都是一项杰出的成就”(a remarkable achievement, both scientifically and technically),“实现这样的目标是多年来全球顶级实验室竞争的量子模拟的圣杯之一”(one of the holy grails of quantum simulation)。 成果示意图。16个非线性“光子盒”阵列囚禁的微波光子强相互作用形成分数量子反常霍尔态(注:“光子盒”的名字最早来自1930年爱因斯坦和波尔争论提出的思想实验) 在非线性光子系统中构建人工规范场,实现光子的分数量子霍尔态 观察到分数量子霍尔态的拓扑关联和拓扑光子流 观察到准粒子的不可压缩和分数霍尔电导

2024-05-08  (点击量:1)

基于相变的可重构微纳光学器件

微纳光学器件具有在亚波长尺度范围内发射、引导、调制、局域、吸收和探测光的能力。与传统的光学器件相比,微纳光学器件具有更小的体积、更高的集成度以及更加丰富的光学功能,展现出更广阔的应用前景和更高的技术价值,现已成为现代集成光学系统中不可或缺的组成部分。在性能方面,微纳光学器件展示出高分辨率、高传输效率和高开关比等优异的光学性能;在制作工艺上,微纳光学器件采用与半导体工艺兼容的先进加工技术,不仅保证了高生产效率和精确度,还降低了生产成本。微纳光学器件的发展极大的推动了集成光学技术的进步,使得许多新奇的光学现象和技术成为可能,并因此带来了光学神经网络、光子集成电路、光量子技术、光通信、生物传感和光学成像等领域的技术革新。 静态微纳光学器件的光学特性在其制备完成后随之固定,在一定程度上限制了器件功能性的拓展,通过引入功能材料(如液晶、半导体材料、二维材料、柔性材料、相变材料等)或功能器件(如异质结、微机电系统等),能够实现微纳光学器件光学响应的可逆动态调控,从而形成了可重构微纳光学器件。其中,相变材料因相变过程中伴随的材料光学性质或形状变化而实现相应器件的可重构光学调制,具有相变响应速度快、可循环次数多、相变引起的光学对比度高以及相变激励方式多元化等优点,为实现可重构微纳光学器件提供了极具竞争力的解决方案。 中国科学院物理研究所/北京凝聚态物理国家研究中心微加工实验室的李俊杰课题组近年来聚焦于微纳光子学器件设计、加工及功能集成方面的研究,并在基于相变材料光学超表面的动态光场调控方面取得了一系列重要进展(Advanced Functional Materials 2024,34,2310626;Laser&Photonics Reviews 2023,17,2200364;Nanoscale 2020,12,8758;Applied Physics Letters 2018,113,231103)。在此基础上,该课题组参考了大量文献资料和最新研究报道,撰写了基于相变材料的可重构微纳光学器件的综述文章,从相变材料的性质和相变机制的角度出发,对其在可重构微纳光学器件方面的应用做出了详细介绍和评述(见图1)。文中介绍的用于实现可重构微纳光学器件的相变材料主要包括三种,分别是硫系相变材料(Chalcogenides)、过渡金属氧化物(Transition metal oxides)以及形状记忆合金(Shape memory alloys)。如图2所示,材料的相变激励方式包括热调控、光调控、电调控、机械调控、磁场调控和电化学调控。其中,电调控与光调控在调控的便利性与可集成性方面优于其它的相变调控方式,是两种最具应用价值的相变调控手段(见图3)。相变前后,硫系相变材料与过渡金属氧化物的介电性质发生了明显的变化,这分别源于电子离域程度以及能带结构的改变,而形状记忆合金则表现出基于马氏体相变的可重构形状变化(见图4)。表1汇总了目前报道的基于相变材料的可重构微纳光学器件,主要包括:可重构超表面、可重构片上光学器件、可调光学薄膜器件、光电探测器、全光开关、可调超表面吸收器、可调太赫兹等离激元器件以及可重构双稳态光学器件等,这些器件的工作波段涵盖紫外、可见、红外以及太赫兹波段,所包含的相变材料形式多样,既有薄膜形式,也包括图案化结构,而实现相变调控的手段主要集中在电调控和光调控技术上。这些器件以按需或自适应的调控方式与入射光相互作用,从而实现特定的光学调制功能,在新一代微纳光学器件及集成光学系统的发展中发挥了不可替代的作用。最后,该综述对基于相变机制的可重构微纳光学器件的现有挑战及未来发展方向进行了总结和展望。在推动可重构微纳光学器件的实用化进程中,应充分考虑相变功耗、调控便利性、相变均匀性、光信号调制幅度与传输效率等问题,未来,基于相变机制的可重构微纳光学器件将进一步向着高度集成化、高效调制、快速响应、低功耗和耐用性出色的方向发展。 图1三类相变材料及其在可重构微纳光学器件中的应用 图2三类相变材料的元素组成及相变激励手段 图3电调控与光调控示意图 图4相变的物理机制及相变引起材料性质的变化 表1基于相变材料的可重构微纳光学器件汇总

2024-05-08  (点击量:1)

2023年半导体市场收入比2022年下降了9%

《Omdia半导体总体竞争分析工具》报告(Omdia CLT)揭示了半导体行业的下滑,收入从2022年的5,977亿美元下降至2023年的5,448亿美元,跌幅9%。这一下降是在两年创纪录的增长之后发生的,突显了半导体市场的周期性。 "新冠疫情时期开始的长期上升趋势已经结束。在疫情期间半导体需求激增,导致市场短缺之后,情况发生了逆转。由于宏观经济因素,需求疲软,而半导体组件供应有所增加"Omdia半导体研究高级分析师Cliff Leimbach评论道。 2023年,尽管半导体行业整体低迷,但人工智能已成为该行业的重要增长动力,专注于这一领域的公司从中受益。英伟达是这一领域的明显赢家,其半导体收入自2022年翻了一番多,2023年达到490亿美元。英伟达的发展轨迹突显了这一成就,因为在2019年疫情之前,其半导体收入还不足100亿美元。尽管英伟达是人工智能的最大受益者,但值得注意的是,英伟达并不是唯一一家利用这一趋势的公司。 "英伟达半导体收入的快速增长使其成为2023年收入第二大半导体公司,仅次于英特尔。2022年的行业领导者三星在2023年下滑至第三位,因为其内存收入比2021年下降了近一半"Leimbach补充道。 与GPU集成以促进人工智能的高带宽内存(HBM)也出现了强劲的需求,SK海力士在这一领域处于领先地位,其他主要内存制造商也在进军这一领域。尽管内存市场在2022年整体下滑,但在2023年全年,HBM市场呈现了强劲的年增长率,增幅127%。Omdia预测,HBM可能在2024年创下更高的增长率,预估达到在150-200%之间,预计将引领内存市场的增长。 2023年,车载领域在半导体市场的影响力更大,收入增长超过15%,达到750亿美元。电动汽车的增长和智能汽车的集成推动了这一领域对半导体的需求,约占整个半导体市场的14%。 经济低迷对主要内存制造商产生了显著影响,按营收计算,这些制造商传统上都是排名前几位的半导体公司。此前,从2017年到2021年,三星电子、SK海力士和美光科技都位列收入前5位。然而,在严峻的内存市场条件下,三星电子在2023年排名第三,SK海力士排名第六,美光科技排名第十二。

2024-04-07  (点击量:13)

具有高级降噪功能的超声波耳塞有望在2025年推出

耳机可能最终会超越几个世纪以来的古老技术,这要归功于一种使用超声波的新型微型扬声器。新的音频芯片可以为降噪耳塞铺平道路,这种耳塞还可以重现来自多个方向的声音效果。 初创公司xMEMS在1月9日的CES 2024上首次展示了其音频芯片Cypress,尺寸约为0.25英寸x 0.25英寸(6.3 x6.5毫米)。该公司表示,它将在明年年底前进入耳塞和耳机。 在传统扬声器中,金属线圈缠绕在磁铁上,电流通过线圈。通过电流产生的电磁力与永磁体的磁性相互作用,永磁体像活塞一样来回推动线圈。该线圈还连接到扬声器锥体或振膜上,该扬声器锥体或振膜推动空气产生声音。该技术于1800年代首次提出,至今仍在耳机中使用。 然而,以这种方式设计的扬声器容易出现损坏、磨损和相位失真等问题,其中,声音波形的形状在信号转换过程中发生变化,造成滞后并导致模糊声音。 Cypress微型扬声器是一种硅芯片,由两个组件组成:ASIC用于处理来自声音文件的电信号和超声波换能器。后一种组件使用压电效应将信号转换为声波,压电效应是指当施加电流时,材料会改变体积(或移动)。 传感器由微机电系统(MEMS)制成,MEMS是包含电子和运动部件的微型机器,它们广泛用于消费电子产品,如蜂鸣器和声音接收器。 与旧技术一样,Cypress换能器震动空气以产生声波。然而,与大多数由压电晶体或陶瓷组成的MEMS不同,Cypress使用了一类由锆钛酸铅(PZT)制成的新型压电薄膜。 PZT与硅扬声器振膜层一起作为半导体制造工艺中的一层。当以这种方式应用时,这些薄膜可以产生高分辨率、高质量的声音。 ASIC芯片首先接收和解释电信号,并将其传输到压电MEMS传感器。薄膜在高超声波频率下振动,产生映射到原始音频信号的空气脉冲。这会在Cypress芯片内部产生气压。最后,解调压电MEMS阀将这种声能转换为我们可以听到的音频。 xMEMS在一份声明中表示,与传统扬声器不同,扬声器输出显示出接近零的相移,因此更适合空间音频等功能,该功能模拟出了被不同位置的扬声器包围的效果。 Cypress芯片还可用于创造更好的降噪技术,该技术可产生量身定制的声波来消除环境噪音。从理论上讲,Cypress更快的机械响应和接近零的相位相干性能够消除更高频率的噪音,而今天的耳机很难掩盖这些噪音。Cypress芯片的这种运动在低频下也会产生更多的能量和压力——是该公司以前的非超声波微型扬声器芯片的40倍。耳机和耳塞将发生巨大变化耳塞和耳机有多种扬声器类型可供选择,但没有一种像微机电系统(MEMS)扬声器那样令人兴奋。在从硬盘驱动器到固态驱动器(SSD)的飞跃中,MEMS扬声器在形式上与传统的动圈或平衡电枢驱动器设计完全不同,并具有令人印象深刻的声明列表。例如,它们显著减轻了质量,提高了电源效率,并且产量高,零件间差异很小,这在制造和性能方面具有优势。 这些组件也称为固态扬声器,可以直接焊接到电路板上,而不是依赖飞线或弹簧端子,并且应该比无法回流到电路板上的传统扬声器更可靠。由于MEMS技术的固有优势,MEMS扬声器的到来将提高微型音频产品在电池寿命、音质和降噪方面的性能上限和下限。 虽然这不会在一夜之间发生,但耳塞转向全频MEMS扬声器而不是平衡电枢和动态扬声器,将吸引制造商希望在拥挤的市场中为他们的产品辩护。尽管上述全频扬声器要到2025年才会上市,但我们已经开始看到MEMS扬声器通过Creative Aurvana Ace 2等产品作为高音扬声器扩散到市场。 虽然个人音频技术在进步,但我们对「好声音」的理解也在进步。哈曼研究人员开发的当前研究和标准提高了我们对人们希望从音频设备中听到的内容的理解,但进步的步伐是永无止境的。在过去的六年中,音频行业采用了来自Bruel&Kjaer和HEAD acoustics等公司的更强大的测试设备,以及围绕听众喜欢的音乐播放系统进行研究的新途径。我们已经看到测量音质以及人们喜欢什么质量变得更加复杂。 例如,Knowles对耳塞反应偏好的研究已经确定了与年龄相关的模式。这种研究得到了最新一代耳朵模拟器的出现,这些模拟器在高于10KHz的频率下是准确的。随着时间的流逝,音频产品应该从这些研究中受益,将声音调谐视为一种更加以用户为中心的努力,而不是一种单一的、一刀切的方法。在Harman、Knowles、HEAD acoustics和其他公司的引领下,我们完全希望看到测量标准和对听觉系统(耳膜之外)的理解不断提高,最终使我们作为音乐消费者的所有人受益。

2024-03-01  (点击量:27)

专题情报

查看更多

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190