光电情报网信息监测服务平台 Chinese Academy of Sciences | optic science and technology information network system

微信公众号

  • 前沿 | “强场超快光学”创新研究群体在分子碰撞动力学方面取得最新研究进展
  • 突破 | 国内研究人员提出激光制造清洁能源新技术
  • 探索 | 苏州纳米所在环形腔被动锁模激光器理论研究中取得新进展
  • 突破 | 半导体所在氮化物位错演化机制及光电神经网络器件研究领域取得新进展
  • 中国科学家提出新的10MJ激光装置概念
  • 中国科大成功观测双光子空间波函数动力学演化
  • 布局 | 美国计划提供高达16亿美元的资金用于包装计算机芯片
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

布局 | 美国计划提供高达16亿美元的资金用于包装计算机芯片

2024年7月9日,拜登政府表示,将拨款高达16亿美元用于开发包装计算机芯片的新技术,这是美国在创造人工智能等应用所需组件方面领先于中国的主要推动力。 这笔拟议的资金是根据2022年立法通过的“芯片法案”授权的一部分,将帮助公司在封装技术领域创新,例如创建更快的数据传输方法和管理芯片产生的热量,美国商务部副部长兼国家标准与技术研究院院长Laurie Locascio表示。 她在旧金山的一次年度行业会议上宣布了这一消息,标志着公司开始申请研发项目资助的起点,预计每个项目的奖励金额高达1.5亿美元。 “我们在先进封装方面的研发工作将重点关注高需求应用,如高性能计算和低功耗电子设备,这两者都是在AI领域实现领导地位所需的,”Locascio女士说。 “芯片法案”获得两党支持,投资520亿美元以刺激国内芯片生产,其中大部分资金用于将硅晶圆转化为芯片的工厂。美国在这一领域的份额已缩减至约10%,大部分被亚洲公司夺走。特别是台湾积体电路制造公司(T.S.M.C.)运营的工厂让政策制定者感到担忧,因为中国对台湾的领土主张。 在芯片封装方面,对外国公司的依赖更为明显。这一过程将完成的芯片(如果没有与其他硬件通信的方式,将毫无用处)安装到一个称为基板的扁平组件上,基板上有电连接器。这个组合通常用塑料包裹。 封装主要在台湾、马来西亚、韩国、菲律宾、越南和中国进行。全球行业组织IPC援引国防部数据估计,美国仅占先进芯片封装的约3%。 到目前为止,大部分联邦资金都用于制造的早期阶段,在新建的美国工厂生产的芯片可能会被运往亚洲进行封装,这对减少对外国公司的依赖几乎没有帮助。 “你可以在这里制造所有你想要的硅芯片,但如果不进行下一步操作,它就没有任何作用,”专注于芯片封装的咨询公司TechSearch International总裁Jan Vardaman说。 情况因公司越来越追求更高的计算性能而变得复杂,它们将多个芯片并排或堆叠在一起进行封装。主导AI芯片销售的Nvidia最近宣布了一款名为Blackwell的产品,它包含两个大处理器芯片,周围环绕着存储芯片堆栈。 为Nvidia制造最新芯片的T.S.M.C.也使用先进技术进行封装。T.S.M.C.预计将获得联邦补助在亚利桑那州生产芯片,但尚未表示会将任何封装服务从台湾转移。 作为硅谷芯片制造商的英特尔(Intel)在封装研究方面被认为是领先者,并已投入大量资金升级新墨西哥州和亚利桑那州的工厂,以在制造服务方面与T.S.M.C.竞争。但美国公司可以利用联邦资金帮助保持技术前沿地位,Vardaman女士说。 这些新资助是一个名为国家先进封装制造计划(National Advanced Packaging Manufacturing Program)的一部分,商务部官员表示该计划将获得约30亿美元的总资金。 “今天的宣布是朝正确方向迈出的又一个重要步骤,”IPC全球政府关系副总裁Chris Mitchell说。 一些行业参与者不等待政府援助。总部位于东京的Resonac公司周一宣布,与其他九家日本和美国公司组成新联盟,专注于在加利福尼亚州联合市建造的新设施中的封装研发。 在一次采访中,商务部的Locascio女士表示,政府本周还将宣布其国家半导体技术中心的概念模型,这是一个拟议的公私合作伙伴关系,用于芯片研发,预计将包括新设施,多州官员希望吸引这些设施。 “我们每天都接到很多关于此事的电话,”Locascio女士说,补充说这一宣布应该会明确设想的设施种类和“人们可以竞争这些设施的过程”。

2024-07-17  (点击量:2333)

布局 | 美国商务部宣布将投入16亿美元推动先进芯片封装技术研发

近日,美国商务部宣布,将投入高达16亿美元资金用于推动芯片封装技术的研发。这一举措是美国政府2023年公布的国家先进封装制造计划(NAPMP)的一部分,旨在加速美国国内先进封装产能的建设。 先进封装技术在提升芯片性能、推动摩尔定律延续、支持AI和高性能计算、降低成本、促进国内产业链发展以及广泛应用等方面都具有重要意义。因此,先进封装技术是半导体产业链中不可或缺的关键环节。 2023年11月,美国政府宣布将投入约30亿美元的资金,专门用于资助“国家先进封装制造计划”(NAPMP),这是《芯片与科学法案》的首项研发投资项目。这些资金将主要用于建立先进的封装示范设施,加快封装、设备和工艺开发。 同时,美国商务部下属的国家标准与技术研究所(NIST)发布了NAPMP愿景文件,明确了资金使用的具体领域,包括封装材料与基底等。 据悉,这笔高达16亿美元资金将通过奖励金的形式提供给创新项目,每份奖励金不超过1.5亿美元,以撬动来自工业界和学术界的私营部门投资。 这笔资金是《芯片法案》授权资金的一部分,目的是帮助企业在芯片之间创建更快的数据传输方式以及管理芯片产生的热量等领域进行创新。 美国商务部副部长兼国家标准与技术研究所所长劳里·洛卡西奥(Laurie Locascio)表示,“我们在先进封装领域的研发工作将重点关注高性能计算(HPC)和低功耗电子产品等高需求应用,这两者都是实现AI领导地位所必需的。” 根据资金补贴要求,资助项目需与五个研发领域中的一个或多个相关,包括设备和工具、电力输送和热管理、连接器技术(包括光子学和射频)、Chiplet生态系统以及电子设计自动化(EDA)。 劳里·洛卡西奥还表示,国家先进封装制造计划将通过强大的研发驱动创新,使美国的封装行业超越世界水平。在十年内,通过美国《芯片与科学法案》资助的研发,我们将创建一个国内封装产业。在这个产业中,美国和国外生产的先进节点芯片可以在美国进行封装,并且通过领先的封装能力实现创新设计和架构。 美国此举希望通过大规模的研发投资,提升美国在先进封装领域的领导地位,从而增强其在全球半导体市场的竞争力。同时,通过加大关键基础研发投入,扩大当前有限的先进制造能力,形成匹配美国芯片制造规模的封装源动力,从而提高整个半导体产业供应链的安全性。

2024-07-12  (点击量:21357)

前沿 | “强场超快光学”创新研究群体在分子碰撞动力学方面取得最新研究进展

分子碰撞是气体介质中普遍存在的一种现象。分子间的碰撞对耗散环境中的分子动力学过程有着重要影响。揭示分子碰撞耗散过程背后的物理机制,对研究真实气体体系中的分子动力学过程具有重大意义。以往基于分子排列回声技术,研究者在实验上观测到分子碰撞耗散过程中的非久期效应,并证明这种效应能够在时域上减缓由分子碰撞诱导的退相干过程。然而,这种效应只会在碰撞耗散前几皮秒时间内对系统产生显著影响,随着时间延迟的增加,该效应会迅速衰减。 最近,兰鹏飞教授团队何立新副教授基于分子排列技术对分子碰撞耗散过程进行了深入研究。首先,他们在实验中采用双折射平衡探测技术(如图1),研究了低气压条件下纯N2气体、N2-Ar、N2-CO2以及N2-He气体混合物中N2分子排列信号衰减率随气体密度的变化。同时,理论上建立了久期和非久期量子模型,分别模拟了实验中的分子碰撞耗散过程。通过理论与实验对比发现,实验结果与非久期理论模拟结果更加吻合(如图2)。这一结果首次揭示了分子排列耗散过程中的非久期效应。进一步通过研究系统退相干过程,研究团队发现,低压气体介质中非久期效应对碰撞耗散过程的影响可以持续数十皮秒甚至更长,这也是为什么该效应能够通过周期较长的分子排列信号来探测。这一研究结果挑战了传统的观点,即非久期效应对分子排列碰撞耗散过程的影响只会存在于激光脉冲激发后数皮秒内,使人们对耗散环境中的分子动力学过程有了更深的认识。 图1:(a)N2分子与气体混合物碰撞示意图。(b)N2分子排列实验测量装置示意图。(c)实验测量的N2分子排列信号。(d)N2排列信号强度随时间的变化。通过对该结果进行指数拟合,可以获得分子排列信号的碰撞衰减速率 图2:实验测量(圆圈)的N2与Ar(a)、CO2(b)、He(c)气混合时,排列信号衰减速率随混合物气压的变化。虚线和点线分别为久期(S)和非久期(NS)量子模型模拟的结果。实验结果与非久期理论结果更加吻合,揭示分子排列耗散过程中的非久期效应

2024-07-26  (点击量:1)

突破 | 国内研究人员提出激光制造清洁能源新技术

能源转化技术是现代科学和工程的重要研究方向,科学家们探索新型催化化学方法来实现能源化学物质的转化,如光催化、电催化等。然而,这些被人们寄予厚望的催化化学技术,在实际应用中还是存在一些问题,距离工业化还有一定距离。那么,能否超越催化化学,开辟一条全新的能源转化途径呢? 最近,中山大学杨国伟教授研究组提出了一种新颖的激光制造清洁能源技术即液相激光发泡(laser bubbling in liquids,LBL),为能源清洁转化领域带来了新的希望。LBL是以脉冲激光在液相中诱导形成微气泡作为微反应器来进行化学反应。泡泡内的峰值温度可高达上万K,同时微气泡能够实现快速升温和降温,速率可达108 K/s。这显然是一个远离热力学平衡的状态,为化学反应提供了一个极端的环境。许多在常态下需要借助催化剂才能进行的化学反应,在小泡泡里面很容易就能发生。这种方法不仅不涉及任何催化化学过程(无需催化剂和复杂的催化反应装置),而且在常态下进行,简单、清洁、高效(图1)。很显然,对于在催化化学以外的常态条件下,去探索简单、绿色、高效的清洁能源制造技术来说,LBL方法打开了一扇大门,同时,也开辟出一条超越催化化学反应的道路。目前,杨国伟教授研究组与柯卓锋教授团队合作将LBL技术应用于清洁能源制造,取得了一系列重要的研究进展。 激光直接分解甲醇制氢 甲醇作为液体氢源,能够与水蒸气在催化剂作用下重整生成氢气和二氧化碳,该反应通常在200–300°C。虽然甲醇重整产氢技术较为成熟,然而催化剂的效率和稳定性亟待提升,副产物二氧化碳的处理仍是环保的重要课题。 曹玮玮博士与李胤午副研究员和闫波博士后合作采用LBL技术,在常温常压和无催化剂条件下,实现了氢气的超快速高效制备(图2)。更为重要的是,整个LBL作用过程没有二氧化碳生成,而是合成了更具有化工应用价值的一氧化碳。同时,他们对LBL反应过程的热力学和分子动力学进行了模拟计算,得出了甲醇分解的反应路径和热力学条件等。LBL方法无需复杂的反应器或苛刻的反应条件,操作简单且清洁环保,展示了其在未来清洁能源生产中的巨大潜力(Research 6(2023)0132,曹玮玮、李胤午、闫波为共同第一作者,杨国伟、柯卓锋为共同通讯作者)。 激光分解氨水制氢 氨(NH3)是一种易于压缩和液化的储氢物质,储存和运输较为方便。目前氨催化分解产氢使用的催化剂大多依赖贵金属,如钌(Ru)等,成本高昂、资源稀缺,且催化过程通常高于400°C。 闫波博士后与李胤午副研究员和曹玮玮博士合作应用LBL技术发展了从氨水中超快速高效提取氢气的新方法(图3)。他们选取水是作为氨的液相介质进行LBL制氢,选取水介质过程避免了氨气的压缩和冷却液化程序。他们利用LBL方法实现了高达33.7 mmol/h的氢气产率。他们进行了第一性原理模拟计算,得出了激光诱导氨分解的可能反应路径和反应热力学条件。未来的研究可以进一步探索LBL方法在其他化学反应中的应用(JACS 146(2024)4864,闫波、李胤午、曹玮玮为共同第一作者,杨国伟为通讯作者)。 激光直接全解水制氢和双氧水 水分解制氢是一种被广泛研究和应用的氢气制备方法,而氢气的燃烧产物也正是水,整个周期干净无污染。因此,水分解制氢吸引了广大研究人员的兴趣。然而水分解反应需克服较高的活化能,这对任何催化体系都是一大挑战。 闫波博士后和曹玮玮博士与湖南师范大学欧阳钢教授团队和中科院物理所孟胜研究员团队合作,实现了激光直接分解纯水制备氢气和过氧化氢(图4)。实验结果显示,该方法的激光光能到氢能的转化效率超过了大多数无牺牲剂光催化裂解水制氢的转化效率。他们通过理论计算与模拟,研究了激光诱导高能活性粒子诱导成核的过程,以及利用TDDFT深入研究了水分解生成氢气和过氧化氢的理论过程。研究结果表明,激光诱导的高温和快速冷却对于高效生成氢气和过氧化氢至关重要(PNAS 121(2024)e2319286121,闫波、Gu Qunfang、曹玮玮、Cai Biao为共同第一作者,杨国伟、欧阳钢、孟胜为共同通讯作者)。 液相激光直接还原二氧化碳为一氧化碳 二氧化碳还原制备一氧化碳是实现碳循环和减少温室气体排放的重要技术手段之一。电化学还原、光催化还原以及热催化还原等方法在二氧化碳还原反应中得到了广泛研究与应用,且可以和太阳能、风能等耦合,保障过程的可持续性。但其缺点在于催化剂的选择、稳定性与贵金属成本等问题,通常还需氢气、碳等还原剂,会产生额外的二氧化碳排放,违背绿色化学原则。 闫波博士后与李胤午副研究员和曹玮玮博士合作应用LBL技术研究了LBL技术在二氧化碳还原领域的应用(图5)。他们利用LBL方法在纯水中实现了二氧化碳到一氧化碳的高效还原。同时,他们通过密度泛函理论(DFT)计算,深入探讨了二氧化碳还原机理和反应路径。未来,通过进一步优化激光系统、深入研究反应机理及探索多领域化学应用,来实现绿色化学和可持续发展的目标。 激光固氮合成氨和硝酸 将大气中的氮气和氢气在高温高压和催化剂的作用下反应生成氨(NH3)的过程,通常需要在催化剂作用下,在400–500°C高温和200–300个大气压的高压下进行,反应条件苛刻。其他方法如电化学固氮和光催化固氮等,均面临催化剂的选择与优化等问题,反应效率较低且操作条件受限,尚未工业化。 曹玮玮博士与李胤午副研究员和闫波博士后合作采用LBL技术,在仅纯水和氮气、无任何催化剂作用下,在室温室压条件下实现高效的氮气固化和活化,在LBL过程中实现了氮的还原反应(NRR)和氧化反应(NOR)。该研究证明了LBL方法可以在无催化剂的情况下,在常温常压下实现氨和硝酸的高效合成,具有重要的科学意义和应用前景(图6)。同时表明LBL技术在氮固化和活化中的优势,包括安全、简单、环保、易于控制和能耗低,并展示了其在工业应用中的潜力。 LBL技术作为一种新的激光制造清洁能源技术,实现了极端非平衡条件下的限域化学反应,能够在常态下实现高效能源化学品的清洁转化和制备,显示出了巨大的工业化应用潜力。未来的研究可以通过开发高效、低成本的激光器实现更高的电光转化效率,从而扩大和增强LBL反应规模。总之,通过持续优化激光系统、深入研究微观反应机理以及探索多领域化学应用,LBL技术可以被期待为一种催化化学之外的简单、绿色、高效的清洁能源制造技术和绿色合成方法。 图1.(a)LBL装置简图;(b)脉冲激光的作用周期示意图;(c)单个激光脉冲周期内微气泡的演化过程示意图 图2.液相激光分解甲醇制氢示意图 图3.LBL分解氨水制氢示意图 图4.激光分解水制氢过程示意图 图5.纯水中利用LBL技术将二氧化碳高效还原为一氧化碳示意图 图6.固氮合成氨技术发展史

2024-07-26  (点击量:3)

2023年半导体市场收入比2022年下降了9%

《Omdia半导体总体竞争分析工具》报告(Omdia CLT)揭示了半导体行业的下滑,收入从2022年的5,977亿美元下降至2023年的5,448亿美元,跌幅9%。这一下降是在两年创纪录的增长之后发生的,突显了半导体市场的周期性。 "新冠疫情时期开始的长期上升趋势已经结束。在疫情期间半导体需求激增,导致市场短缺之后,情况发生了逆转。由于宏观经济因素,需求疲软,而半导体组件供应有所增加"Omdia半导体研究高级分析师Cliff Leimbach评论道。 2023年,尽管半导体行业整体低迷,但人工智能已成为该行业的重要增长动力,专注于这一领域的公司从中受益。英伟达是这一领域的明显赢家,其半导体收入自2022年翻了一番多,2023年达到490亿美元。英伟达的发展轨迹突显了这一成就,因为在2019年疫情之前,其半导体收入还不足100亿美元。尽管英伟达是人工智能的最大受益者,但值得注意的是,英伟达并不是唯一一家利用这一趋势的公司。 "英伟达半导体收入的快速增长使其成为2023年收入第二大半导体公司,仅次于英特尔。2022年的行业领导者三星在2023年下滑至第三位,因为其内存收入比2021年下降了近一半"Leimbach补充道。 与GPU集成以促进人工智能的高带宽内存(HBM)也出现了强劲的需求,SK海力士在这一领域处于领先地位,其他主要内存制造商也在进军这一领域。尽管内存市场在2022年整体下滑,但在2023年全年,HBM市场呈现了强劲的年增长率,增幅127%。Omdia预测,HBM可能在2024年创下更高的增长率,预估达到在150-200%之间,预计将引领内存市场的增长。 2023年,车载领域在半导体市场的影响力更大,收入增长超过15%,达到750亿美元。电动汽车的增长和智能汽车的集成推动了这一领域对半导体的需求,约占整个半导体市场的14%。 经济低迷对主要内存制造商产生了显著影响,按营收计算,这些制造商传统上都是排名前几位的半导体公司。此前,从2017年到2021年,三星电子、SK海力士和美光科技都位列收入前5位。然而,在严峻的内存市场条件下,三星电子在2023年排名第三,SK海力士排名第六,美光科技排名第十二。

2024-04-07  (点击量:2918)

具有高级降噪功能的超声波耳塞有望在2025年推出

耳机可能最终会超越几个世纪以来的古老技术,这要归功于一种使用超声波的新型微型扬声器。新的音频芯片可以为降噪耳塞铺平道路,这种耳塞还可以重现来自多个方向的声音效果。 初创公司xMEMS在1月9日的CES 2024上首次展示了其音频芯片Cypress,尺寸约为0.25英寸x 0.25英寸(6.3 x6.5毫米)。该公司表示,它将在明年年底前进入耳塞和耳机。 在传统扬声器中,金属线圈缠绕在磁铁上,电流通过线圈。通过电流产生的电磁力与永磁体的磁性相互作用,永磁体像活塞一样来回推动线圈。该线圈还连接到扬声器锥体或振膜上,该扬声器锥体或振膜推动空气产生声音。该技术于1800年代首次提出,至今仍在耳机中使用。 然而,以这种方式设计的扬声器容易出现损坏、磨损和相位失真等问题,其中,声音波形的形状在信号转换过程中发生变化,造成滞后并导致模糊声音。 Cypress微型扬声器是一种硅芯片,由两个组件组成:ASIC用于处理来自声音文件的电信号和超声波换能器。后一种组件使用压电效应将信号转换为声波,压电效应是指当施加电流时,材料会改变体积(或移动)。 传感器由微机电系统(MEMS)制成,MEMS是包含电子和运动部件的微型机器,它们广泛用于消费电子产品,如蜂鸣器和声音接收器。 与旧技术一样,Cypress换能器震动空气以产生声波。然而,与大多数由压电晶体或陶瓷组成的MEMS不同,Cypress使用了一类由锆钛酸铅(PZT)制成的新型压电薄膜。 PZT与硅扬声器振膜层一起作为半导体制造工艺中的一层。当以这种方式应用时,这些薄膜可以产生高分辨率、高质量的声音。 ASIC芯片首先接收和解释电信号,并将其传输到压电MEMS传感器。薄膜在高超声波频率下振动,产生映射到原始音频信号的空气脉冲。这会在Cypress芯片内部产生气压。最后,解调压电MEMS阀将这种声能转换为我们可以听到的音频。 xMEMS在一份声明中表示,与传统扬声器不同,扬声器输出显示出接近零的相移,因此更适合空间音频等功能,该功能模拟出了被不同位置的扬声器包围的效果。 Cypress芯片还可用于创造更好的降噪技术,该技术可产生量身定制的声波来消除环境噪音。从理论上讲,Cypress更快的机械响应和接近零的相位相干性能够消除更高频率的噪音,而今天的耳机很难掩盖这些噪音。Cypress芯片的这种运动在低频下也会产生更多的能量和压力——是该公司以前的非超声波微型扬声器芯片的40倍。耳机和耳塞将发生巨大变化耳塞和耳机有多种扬声器类型可供选择,但没有一种像微机电系统(MEMS)扬声器那样令人兴奋。在从硬盘驱动器到固态驱动器(SSD)的飞跃中,MEMS扬声器在形式上与传统的动圈或平衡电枢驱动器设计完全不同,并具有令人印象深刻的声明列表。例如,它们显著减轻了质量,提高了电源效率,并且产量高,零件间差异很小,这在制造和性能方面具有优势。 这些组件也称为固态扬声器,可以直接焊接到电路板上,而不是依赖飞线或弹簧端子,并且应该比无法回流到电路板上的传统扬声器更可靠。由于MEMS技术的固有优势,MEMS扬声器的到来将提高微型音频产品在电池寿命、音质和降噪方面的性能上限和下限。 虽然这不会在一夜之间发生,但耳塞转向全频MEMS扬声器而不是平衡电枢和动态扬声器,将吸引制造商希望在拥挤的市场中为他们的产品辩护。尽管上述全频扬声器要到2025年才会上市,但我们已经开始看到MEMS扬声器通过Creative Aurvana Ace 2等产品作为高音扬声器扩散到市场。 虽然个人音频技术在进步,但我们对「好声音」的理解也在进步。哈曼研究人员开发的当前研究和标准提高了我们对人们希望从音频设备中听到的内容的理解,但进步的步伐是永无止境的。在过去的六年中,音频行业采用了来自Bruel&Kjaer和HEAD acoustics等公司的更强大的测试设备,以及围绕听众喜欢的音乐播放系统进行研究的新途径。我们已经看到测量音质以及人们喜欢什么质量变得更加复杂。 例如,Knowles对耳塞反应偏好的研究已经确定了与年龄相关的模式。这种研究得到了最新一代耳朵模拟器的出现,这些模拟器在高于10KHz的频率下是准确的。随着时间的流逝,音频产品应该从这些研究中受益,将声音调谐视为一种更加以用户为中心的努力,而不是一种单一的、一刀切的方法。在Harman、Knowles、HEAD acoustics和其他公司的引领下,我们完全希望看到测量标准和对听觉系统(耳膜之外)的理解不断提高,最终使我们作为音乐消费者的所有人受益。

2024-03-01  (点击量:3449)

专题情报

查看更多

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190