光电情报网信息监测服务平台 Chinese Academy of Sciences | optic science and technology information network system

微信公众号

您当前的位置: 首页 > 资源详情

前沿 | 1,033 GHz超高增益带宽积雪崩光电探测器

编译者:husisi发布时间:2024-6-13点击量:223 来源栏目:科技进展

华中科技大学武汉光电国家研究中心的张新亮教授、余宇教授团队在光电探测器研究领域取得重要突破。研究团队基于硅锗材料构建L型SACM结构并协同谐振效应,克服传统材料和工艺限制,为探测器的增益与带宽性能带来颠覆性提升。该工作将雪崩光电探测器APD的增益带宽积提升至THz量级,为下一代高速光互连及人工智能等新兴领域提供了新的技术路径和解决方案。

雪崩光电探测器(APD)是一种特殊的具有增益的光电探测器,在实现光电物理转换的同时,通过材料内部的载流子倍增机制对光电流进行有效放大,被广泛地应用于对弱光检测场合。此外,随着全球数据量的海量激增与摩尔定律逼近极限,信息时代正遭遇容量危机,要求探测器兼具大带宽的工作特性,以支撑当今数据中心的高速率通信。因此,增益带宽积(GBP)作为衡量APD性能的核心指标,它反映着APD在实现光电转换的过程中所兼顾增益和带宽的能力,GBP对于光通信系统的灵敏度与通信速率起到决定性影响。

然而上世纪六十年代,美国物理学家Emmons便从理论上揭示了APD的增益和带宽之间存在固有矛盾。历经半个世纪的发展,传统的商用APD采用磷化铟(InP)或者铟铝砷(InAlAs)作为载流子的倍增材料,器件带宽超过35 GHz,但受限于材料的低增益与高噪声的内禀属性,其增益带宽积至今无法突破300 GHz瓶颈,在光模块产业从单波100 Gb/s向着单波200 Gb/s技术更迭的浪潮中难以立足。

伴随着近三十年硅光技术的蓬勃发展,以硅(Si)作为倍增材料,外延生长锗(Ge)实现1310/1550 nm通信波段光吸收的硅锗APD,逐步迈向光通信领域的中心。虽然,Si材料相较于InP/InAlAs具有更优的倍增特性,理论上支持更高的增益。但是,硅锗APD的带宽特性受到Ge材料较低载流子迁移率的制约,加之局限的优化技术与工艺手段,其增益带宽积数十年来始终徘徊于百GHz量级。

图1 本工作与其他APD性能指标对比:速率、带宽和增益带宽积

近日,张新亮、余宇教授团队研制出世界首个增益带宽积突破1THz的高性能锗硅APD。研究团队利用“L型”吸收-电荷-倍增分离的结构(SACM),并且协同调控其中电场分布和谐振效应,器件在增益高达19.5的状态下仍能得到53GHz的大带宽,即1033 GHz增益带宽积。其中,通过对P型电荷层宽度进行恰当拉宽,有效地防止电荷层向倍增区扩散的同时,还对内部电场强度进行精密调控,隔离了不利于增益的锗倍增过程。然后,在Ge和Si之间引入间隙用于抑制Ge表面的电场,从而降低APD的有效电离系数而提高增益。最后,利用电极上的螺旋设计引入等效电感,优化倍增区域的动态谐振进而抬升器件带宽,促使GBP进一步提升。此外,条形硅波导采用锥型耦合结构用于解耦光吸收长度和载流子传输路径,保证了效率和速率的双重提高。

研究团队还基于硅锗APD进一步开展了高速信号的眼图与信噪比测试(图3),以验证器件的高速接收特性。实验表明,探测器对于112 Gb/s OOK和200 Gb/s PAM4的超高速率弱光信号,均能实现高灵敏度接收。此外,利用四通道APD阵列结合波分复用技术,成功演示了满足800 Gb/s业界前沿标准的高速率光信号接收。

图2 所述硅锗APD结构(a),器件带宽(b)、增益与增益带宽积测试结果(c)

图3 APD高速信号传输测试

该研究针对硅锗材料内蕴的物理机制以及工艺结构提出行之有效的优化策略,解决了APD的增益与带宽难以协同提升的难题,创造了THz量级增益带宽积纪录,有望推动高速硅光方案进一步跨越式发展。同时,硅锗APD的制备与成熟的互补金属氧化物半导体(CMOS)工艺完全兼容,易于实现低成本、大规模量产。伴随着该技术的深入优化与应用,能够加速800G甚至1.6T光模块的全球化产业布局,并在下一代光通信系统中实现更快的数据传输速度和更高的通信质量,为大数据、云计算和人工智能等新兴科技发展提供强有力的支持。

原文题目

前沿 | 1,033 GHz超高增益带宽积雪崩光电探测器

提供服务:导出本资源

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190