光电情报网信息监测服务平台 Chinese Academy of Sciences | optic science and technology information network system

微信公众号

您当前的位置: 首页 > 科技进展

科技进展共计 1,407 条信息

      全选  导出

1 前沿 | 通过非线性光纤实现钛宝石光梳与1.5微米激光相干传递 2024-08-02

近年来,高精度光频标的频率不确定度和不稳定度都已经达到1×10−18,使频率测量提升到前所未有的精度,频率是目前所有物理量中测量精度最高的。高精度光频标的发展不仅促进了时间/频率单位“秒”的革新,也将为开展相对论检验、引力势测量、暗物质搜寻等基础前沿研究提供高精尖的仪器。基于高精度的光频标网络是开展上述研究与应用的主要方法与途径之一。但是,大部分光频标的波长都在1.13 mm以下,而光纤通讯波段则在1.26-1.63 mm,如图1a所示。要相干连接光频标与光通讯波段往往不能只依靠单个光频梳,因为还没有一种光频梳能同时覆盖上述两个波段。目前常用的方法需要借助光学倍频等方式实现光频标与光纤通讯波段的连接。 另一方面,随着基于低温硅腔和低温蓝宝石腔的稳频激光的频率不稳定度达到10-17水平(波长一般处于1.5 mm),许多研究者都希望能将如此低噪声稳频激光的相干性传递到光频标波段,从而提高光频标的频率稳定度。这也需要建立1.5 mm激光与光频标的相干连接。 实验室光频控制与合成课题组设计了如图1b的实验方案,通过1.5 mm激光与钛宝石飞秒光梳共同在光子晶体光纤中的非线性四波混频相互作用,在可见光波段产生了与1.5 mm激光相关联的光梳(如图b中的虚线所示)。这个新产生的光梳与钛宝石光梳在可见光波段(文中演示了600 nm附近)拍频,从而获得1.5 mm激光与钛宝石飞秒光梳拍频信号,即建立了1.5 mm激光与钛宝石飞秒光梳的相干连接。与常规借助于倍频的方法相比,该方法具有探测带宽宽、信噪比高、结构简单等优点。 在上述相干探测的基础上,课题组又将镱原子光频标的钟激光信号(578 nm)相干传递到1.5 mm波段,并与传统探测方案——将1.5 mm激光倍频后再与钛宝石光梳拍频的方法进行比对,证明采用该方法引入的频率传递噪声小于6×10-18(1秒平均时间)和1×10-20(1000秒平均时间),频率传递不确定度小于2×10-19,比目前最好的光频标的性能还小,因此基于上述探测方法的相干传递不影响光频标的性能。 图1:(a)光频标与光梳波长分布。(b)钛宝石光梳与1.5 mm激光相干探测方法原理示意图 查看详细>>

来源: 点击量:135

2 探索 | 新一代特种光纤适合量子技术的应用 2024-08-02

近日,来自英国巴斯大学物理学家开发出新一代特种光纤,以应对未来量子计算时代出现的数据传输挑战。该成果有望推动大规模量子网络的扩展。研究成果发表在新一期《应用物理快报·量子》上。 量子技术备受期待之处,在于它能以前所未有的计算能力使人们解决复杂的逻辑问题、开发新药,同时,量子技术还能通过提供牢不可破的加密技术,为人们带来更安全的通信。然而,由于光纤的实心芯,当今在全球范围内传输信息的有线网络,并不适合未来的量子通信。 明亮的光线通过新设计的光纤传导 传统光纤传输的光的波长,由石英玻璃的损耗决定。这些波长与光量子技术所需的单光子源、量子比特和有源光学元件的工作波长不兼容。因此,研究人员必须开发出与现在不同的支持设备,才能保证其在未来量子网络中发挥作用。 此次,巴斯大学研究人员从光纤技术的角度分析了量子互联网的相关挑战,提出了一系列实现稳健、大规模量子网络可扩展性的解决方案,包括用于长距离通信的光纤和允许量子中继器的特种光纤。新制造的特种光纤与标准电信光纤不同,其具有微结构芯,由沿光纤整个长度分布的复杂气穴图案组成。这些图案使人们可操纵光纤内部光的特性,创建纠缠光子对,改变光子的颜色,甚至捕获光纤内部的单个原子。 研究团队介绍说,特种光纤通过充当纠缠单光子源、量子波长转换器、低损耗开关或量子存储器容器,能在节点本身实现量子计算。同时,特种光纤可直接集成到网络中,极大延长了可运行距离。 新型光纤还能生成更多奇特的光量子态,应用于量子计算、精密传感和信息加密,这也为未来的量子计算机大规模应用奠定了基础。 查看详细>>

来源: 点击量:104

3 上海交通大学在激光增材制造领域取得重大进展 2024-07-31

上海交通大学材料科学与工程学院董安平研究员、熊良华副教授、杜大帆副教授、何林助理教授课题组联合北京中国科学院高能物理研究所张兵兵副研究员团队,在激光增材制造同步辐射原位研究领域取得了重要进展,相关研究成果以“Dynamics of pore formation and evolution during multi-layer directed energy deposition additive manufacturing via in-situ synchrotron X-ray imaging:A case study on high-entropy Cantor alloy”为题发表在International Journal of Machine Tools and Manufacture上,这是国内首篇仅利用国内同步辐射资源发表的原位增材高水平文章。 该工作利用同步辐射高能X射线快速成像技术,对典型高熵Cantor合金在传导模式下的多层定向能量沉积(DED)过程进行了原位研究,揭示了三种新的孔洞形成机制,并验证了三种已知的孔洞生成机制;与此同时,基于熔池尺度流场高时空分辨表征,提出了一种调控马兰戈尼流实现孔隙消除新机制。这些发现为高熵合金的增材制造提供了关键的实验数据,有助于开发精准的计算模型和深入理解熔池微观尺度下的孔隙控制策略。上海交通大学材料科学与工程学院博士生张书雅为论文第一作者,上海交通大学材料科学与工程学院孙宝德教授、董安平研究员、熊良华副教授、中国科学院高能物理研究所张兵兵副研究员为论文共同通讯作者,上海交通大学为论文第一完成单位。 激光定向能量沉积(Laser Directed Energy Deposition,LDED)增材制造技术快速实现三维复杂几何形状和大尺寸组件的高质量制造,并且能够制备微观结构可调的新型合金和功能梯度合金,在航空航天、生物医学和核能领域具有重要应用。然而,与传统的铸造和焊接工艺相比,3D打印产品通常表现出更高的孔隙率和更大的孔隙尺寸,难以保障其激光打印一致性和稳定性,严重影响了零件的力学和服役性能。因此,通过优化工艺过程以减少孔隙,对于打印高熵合金等新型金属至关重要。然而,目前对于多层DED过程在传导模式下孔洞形成机制的系统性分析仍然有限;熔池内部形成的孔洞如何随熔流演变并相互作用?这些基础科学问题对于减少甚至消除孔隙至关重要,而多物理模拟熔流对孔隙往往依赖高精度实验数据,当前在多道次DED原位实验研究尚未报道。 针对上述问题和挑战,研究人员利用同步辐射高能X射线快速成像技术,高时空分辨穿透高温金属熔体,实时观察到高动态微尺度下熔池和气孔的动态演变过程,原位研究了传导模式下多层DED过程中多种合金体系(从铝基、钛基、镍基合金到高熵合金)中的孔洞形成及演化行为,阐明了熔池内六种孔洞生成机制和三种孔洞演化机制。 研究还发现,典型Cantor高熵合金中存在独特的逆Marangoni对流现象,有助于延长孔洞的生存时间。在熔池循环区,孔洞沉降至激光相互作用区相邻位置的熔池底部,随后被推至熔池尾部;在接触到凝固前沿之前向上移动,并重新进入熔池内部循环。长寿命孔洞通常会在熔池激光相互作用区和循环区相邻位置合并,容易向高温区域移动,在热毛细力和浮力主导下经由熔池表面逃逸。这些发现对高熵合金等新合金体系DED工艺参数优化、开发可靠的高保真计算模型以及从熔池尺度调控缺陷等具有理论指导意义。 图1同步辐射原位研究激光定向能量沉积增材制造过程,从熔池尺度高精度高时空分辨揭示内部孔洞形成及演化新机制 图2同步辐射快速成像原位研究DED过程。(a)利用高能快速X射线成像技术实时监测粉末输送示意图;(b)同步辐射线站原位表征装置图 图3同步辐射快速成像高时空分辨表征熔池形貌,定量化数据可以标定和输入高保真模型 图4 Cantor合金多道次熔覆后熔道形貌,可以看出激光能量密度严重影响多道次熔道内部缺陷生成和熔池表面起伏以及凝固后成形质量 图5同步辐射原位表征数据定量化分析熔池内部孔洞的捕获和消除行为 查看详细>>

来源: 点击量:754

4 结构光和人工智能如何塑造未来通信 2024-07-31

结构光将先进的图像处理与机器学习相结合,在创新实验中实现了高数据容量和准确性,从而增强了信息传输能力。 结构光通过整合多自由度的空间维度,具有极大提高信息容量的潜力。最近,结构光模式与图像处理和人工智能的融合已在通信和检测等领域展现出强大的发展潜力。 结构光场最显著的特征之一是其振幅信息的二维和三维分布。这一特点不仅能与成熟的图像处理技术有效结合,还能借助当前推动深刻变革的机器学习技术实现跨媒介信息传输。基于相干叠加态的复杂结构光场可以携带丰富的空间振幅信息。通过进一步结合空间非线性转换,可以实现信息容量的显著提升。 北京理工大学的Zilong Zhang和南洋理工大学的Yijie Shen及其团队成员提出了一种基于复模相干叠加态及其空间非线性转换的增强信息容量的新方法。通过整合机器视觉和深度学习技术,他们实现了低误码率的大角度点对多点信息传输。 在该模型中,高斯光束通过空间光调制器获得结构光的空间非线性转换(SNC)。卷积神经网络(CNN)用于识别光束的强度分布。通过比较基本叠加模式和SNC模式,可以发现随着基本模式的组成特征模式阶数的增加,HG叠加模式的编码能力明显优于LG模式,空间结构非线性转换后的模式编码能力可以得到显著提高。 验证编码和解码性能 为了验证基于上述模式的编码和解码性能,我们传输了一幅50×50像素的彩色图像。图像的RGB维度被分为5个色度等级,共包含125种色度信息,每种信息由125个HG相干叠加态编码。此外,还通过DMD空间光调制器将大气湍流造成的不同程度的相位抖动加载到这125种模式上,并利用深度学习技术进行训练,形成数据集。 进一步利用非线性转换,实现了对更高容量解码效果的分析,其中选择了530个SNC模式,通过卷积神经网络对这些模式的混淆矩阵进行实验测量,如图2所示。实验结果表明,由于结构特征更加明显,SNC模式在显著提高数据容量的同时,仍能确保类似的低误码率,数据识别准确率高达99.5%。此外,实验还验证了机器视觉在漫反射条件下的模式识别能力,实现了多台接收摄像机同时进行高精度解码,观察角度可达70°。 结构光技术通过空间维度和机器智能得到增强,促进了信息传输和检测 非线性转换产生的复杂结构光具有更高的信息容量 查看详细>>

来源: 点击量:132

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190